I_
Coﬂmlljd_Ro_bgL

. BuildingaRover with Python Lmux
Motors, and Sensors GRE

Robotics/Programming

Make a Raspberry
Pi-Controlled Robot

Space agencies shouldn't be the only ones who get to play with robotic rovers piled high
with sensors. In tackling just one project—a four-wheeled robotic rover inspired by NASA's
designs—this book teaches you the basics of the Raspberry Pi, demystifies programming
on Linux, outlines motor basics, and explains the different kinds of sensors needed to make
a cool robot do cool things. Best of all, when you've completed the book, you'll have built a
robot rover ready to do your bidding.

The Raspberry Piis one of the world’'s most popular tiny computers. Inexpensive and small,
it's perfect for projects that interact with the world, which is exactly what your robot rover is
going to do!

You don't need to be an electronics expert to follow along with the fully illustrated step-by-
step instructions in this book. You don't even need to know how to solder! In addition to the
basic instructions, the book is also rich with resources you can use to enhance your robot's
capabilities.

In Make a Raspberry Pi-Controlled Robot, you’ll learn how to:

) Build a robot chassis and control motors and motor drivers from a Raspberry Pi.

» Monitor the real world with temperature, barometric pressure, and distance sensors.

) Know where your bot is going using GPS, an accelerometer, and a magnetometer.

» Control your robot—and see what it sees—remotely over a WiFi connection.

)» Connect to sensors with 12C, General Purpose 170, and an Analog-to-Digital Converter.

You'll learn how to build a rover from start to finish—a satisfying project that teaches you
all the basics you’ll need to move on to more advanced construction with confidence and a
firm understanding of basic robotics. What are you waiting for?

Experience the World Through the Eyes of the Pi

US $19.99 CAN $20.99

ISBN: 978-1-4571-8603-5
Make:
IR .

7814571186035 makezine.com

Make a Raspberry
Pi—-Controlled Robot

Wolfram Donat

LV MAKERMEDIA

SEBASTOPOL, CA

Make a Raspberry Pi—Controlled Robot
by Wolfram Donat

Copyright © 2015 Wolfram Donat. All rights reserved.
Printed in the United States of America.
Published by Maker Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Maker Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safaribooksonline.com). For more information, contact O'Reilly
Media's corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Patrick Di Justo Indexer: Angela Howard
Production Editor: Melanie Yarbrough Cover Designer: Riley Wilkinson
Copyeditor: Sharon Wilkey Interior Designer: Nellie McKesson
Proofreader: Kim Cofer lllustrator: Rebecca Demarest

November 2014: First Edition
Revision History for the First Edition:
2014-11-10: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781457186035 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The Maker Media logo
is a trademark of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Maker Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the user of the information con-
tained herein.

ISBN: 978-1-457-18603-5
[LSI]

Preface....ccvviiiiiiiiiiieeeeeeeneeseasnnnnnnness Vil
1 Introduction......ccciiiiiiiiirinrenreeneenennees 1

2. Introtothe Raspberry Pi.....cccovveeeiniinnnnns 7

Model Aand Model Bo.iiiiiii i e 8
Model B4 .o e e e 14
] [14
L1 2 2 15
011 P 15
) =T o T P 15
Whereto GetHelp ..ot e 15

3 IntrotoLlinuUX....ccooiiveieeeeeeeceeceecceneess 19

I (et AU [t 21
COMMANGS . ettt ettt e e e et e e e 22
NaVIgatioN . vt i e e e e 24

4. Setting Upthe Wireless.........ccivviinnnnnne. 27

Historical Problems e 28
The Ralink Chipset . ..o e 29
Making It Work: The GUIWaY . ..cvviiiiii e i eeeeeeens 30
Making It Work: The Command-LineWayc.cooivuien... 32
Settinga Static IPAdAresscoveiinii e 33
Running the PiHeadlessco.viiiniiiiiiiii it 35
Setting Upan Ad Hoc Networkovviiiiiii e 36

10.

PartsIsParts........ccovivveereeeeeeees. 39

BOAY it e 39
Wheels, Motors,and Powerccoiviiiiiiiiiiinnnnnn, 41
A=) 0 10) 3 47
Miscellanyeei i e 50
TOO0IS et e e 51

Y= 7/ 13 Y 54
PWMCONtIOl ..ot 54
SEIVOBIASTEr . oottt s 57

Bot Construction.............cccevveeee.. 59

The Body ..o e 59
The MOtOrS . vttt it ettt et cee i ieens 64
TheWheels . ..o e e 67

TheRearWheelsoviiiiiii i 68

TheFrontWheels......ccooviiiiiiiiiii i 72
The RObOtiC ArM . .e i et 74
P POWEr .« 80
Placing Everythingouiuiiiii et 82

Bot Control..............cciiivviieeiee... 85
Connecting the Motors and Motor Controller.............. 85
Controlling the Robotic Armcooviiiii i, 89

Bot Location.......c.cccvevivveeeeenenne.. 93

Preliminary Setup ...o.vuii e 94
Communicating with the GPS Module..................... 96
Usingthe GPSData.....o.vvviinineiiiiiiiieiiiinnennnn, 99

Sensors, Sensors, Sensors.............. 105

SHT15 Temperature SeNnsor......ovv e ini e ennennennns 107
UIrasonic SENSOr .. .v vt cie e i i i 108
Photoresistor .. vv v vttt e 109
Magnetic SENSOr ...ttt 111
Reed SWItCh ..ot e 113
MOtioN SENSOr ..\ e i e 115
1 Y=Y 1Yo 3 116
HMC5883L COMPASS + .t veeeteeneeeeneenenennanenenes 119
BMP180P Barometer......ccoviiiiiiiiiiiiiiinannnn. 120
Nintendo Wi Devicesoovviiiiii i i iiiinennn 121
(=Y 221 - 1R 122

Make a Raspberry Pi-Controlled Robot

Appendix A. Setting Upthe Pi................ 135
Appendix B. Intro to Python.................. 141
INdeX . .ooiiiiiiiiiiiiiiiieeessscccccaennnnns 149

Table of Contents

\

So you want to build a robot.

Like many others before you, you saw the introduction of the Raspberry Pi minicomputer as a
milestone in not just portable computing technology, but mobile robotic technology. After all,
here was a device the size of a credit card, with a processor equivalent to a Pentium Ill. Here was
a device about the same size as an Arduino board, but capable of HD 1080p graphics. Here was
a 700MHz CPU, with a set of 26 GPIO pins that could connect it to the outside world. Here, in a
nutshell, was a robotic brain.

Unfortunately, it probably didn’t take you very long to figure out that calling a computer a
robotic brain and making it a robotic brain are two very, very different things. Sure, you can plug
the Piinto your desktop monitor, add a keyboard and a mouse, and start to program. But unless
you have a specificgoalin mind and a clear path to get there, it’s easy to get lost in the mechanics
of writing the program, and adding sensors and motors and switches and cameras and the
countless other things that make up a robot. So even though the Raspberry Pi made robotics
cheaper and smaller, it didn’t necessarily immediately make it easier (see Figure P-1).

Vii

viii

Figure P-1. Not as easy as it looks

We're fortunate that this didn’t stop people from pressing forward; a Google search for
“raspberry pi robot” brings up over two million results, not counting the YouTube videos
and all of the specialized subsearches, like “raspberry pirobot arm” and “raspberry pirobot
servo” and “raspberry pi robot butler” Robotics is just like any other discipline: there will
always be backyard tinkerers, hobbyists, and off-duty professionals, as well as hardware
and software hackers who take off-the-shelf parts and stretch them to—and past—their
limits.

Yes, the swarm of synchronized flying drones at MITisawesome, but that project has several
million dollars in funding behind it. Meanwhile, your next-door neighbor has succeeded
in creating a wheeled robot that can play fetch with his dog, chase the kids, and play
Minecraft, all for a budget of under $500—something | find quite a bit more impressive.

Make a Raspberry Pi-Controlled Robot

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements such
as variable or function names, databases, data types, environment variables, statements,

and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values determined by

context.

/ This element signifies a tip, suggestion, or general note.

a This element indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you're reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a CD-
ROM of examples from Make: books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “Make a Raspberry Pi-Controlled Robot by Wolfram Donat
(Maker Media). Copyright 2015 Wolfram Donat, 978-1-4571-8603-5"

Preface

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at bookpermissions@makermedia.com.

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert
Safa Il contentin both book and video form from the world’s leading authors
BooksOnline jn technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem solv-
ing, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organiza-
tions, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like Maker Media, O'Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and
dozens more. For more information about Safari Books Online, please visit us online.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

Make:

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Make: unites, inspires, informs, and entertains a growing community of resourceful people
who undertake amazing projects in their backyards, basements, and garages. Make: cel-
ebrates your right to tweak, hack, and bend any technology to your will. The Make: audi-
ence continues to be a growing culture and community that believes in bettering our-
selves, our environment, our educational system—our entire world. This is much more
than an audience, it's a worldwide movement that Make: is leading—we call it the Maker
Movement.

Make a Raspberry Pi-Controlled Robot

For more information about Make:, visit us online:

Make: magazine: http.//makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com

Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any additional informa-
tion. You can access this page at http://bit.ly/make_a_raspberry_pi_controlled_robot.

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

Acknowledgments

It's true—writing a book is a solitary endeavor, but it definitely can't be done alone. There are
several people I'd like to thank, without whom neither the Rover nor this book about it would
exist.

First and foremost, thank you to Becky and Reed, for supporting me and putting up with my
parts, tools, and half-built, weirdo projects scattered around the house.

Dexter and Jérgen—you can both stop talking now.

And finally, a big thanks to all of the crew at Make: and O'Reilly—Brian, Melanie, Frank, Sharon,
Gretchen, Dale, and especially Patrick. You guys are awesome, and all of your support was much
appreciated!

Preface

Xi

The task of building a robot is unlike any other in computer science. It's a strange amalgamation
of computer, electrical, and mechanical engineering. Being able to program is great (and nec-
essary), butif you can’t get your program to interact with physical items like sensors and motors,
thenyour robot will forever be a virtual one. If your motors can't move your rover without pulling
more current than your circuits can source, the rover will be immobile until you find a solution
—either different motors, a different circuit, or a lighter rover. And using a reed switch to de-
termine when your rover runs into a wall is a great idea, until you discover that the switch you
bought online can’t stand up to the force of a 20-pound rover hitting a wall at 10 miles per hour.
You need to learn to roll with the punches, fix what breaks, and—when possible—prevent it
from breaking in the first place.

Building a robot also requires knowing your limits, related to both your knowledge and your
materials. | really wanted to put a robotic gripper hand on this rover, and chances are | will
eventually, but I'm aware that it probably won't happen without different tools and better
materials than those | can find at the corner hardware store. Likewise, the ion-drive engine is
going to have to wait a few years; in the meantime, electric car-seat motors will have to do. And
be prepared to know and accept when one of your designs is just wrong, and to go back and
redesign something. By following along in this book, hopefully you'll be taking advantage of
my making the mistakes for you; rest assured that the rover design you see in this book is by
no means the original design | had in my head, though | am pretty happy with the results.

The flip side to knowing your limits, of course, is being willing to stretch those limits when you
think you can, and to be ready to think of unconventional ways to do things, especially when
you're a backyard tinkerer—a Maker. PVC pipe, for example, is meant to be used for plumbing.
However, it also makes excellent shock-absorbing drive axles (see Chapter 7). Yes, I'm using
plumbing flex-hose to cover the guts of my robotic arm, and the rover’s wheels are pulled
straight off a Power Wheels vehicle. Sometimes you can experience great flashes of inspiration
just by wandering the aisles of your local hardware (or toy) store. Sometimes you can solve a
particularly knotty problem the same way.

Introduction

| like to call this robot a rover, as | tried to pattern it after NASA’s designs. Figure 1-1 shows
the general outline of the finished rover.

Figure 1-1. The rover

It's not nearly as robust as NASA's versions, of course, and you'll notice that its four (not six)
wheels don't sit on their own independent shock absorbers, but the design is a proven
one. And speaking of wheels: although | would very much like to program my own an-
thropomorphic android, such as C-3PQ, it’s a sad fact that the Raspberry Pi's computing
power is most likely not up to the task of controlling a bipedal droid. You may think it’s
nothing special, but as it happens, getting a robot to not only balance on two legs, but
alsowalk on them, is quite a challenge. The well-known ASIMO robot by Honda (Figure 1-2)
required many years and many millions of dollars to finally be able to walk on its own.

To balance on two feet, a robot’s internal sensors must constantly measure where the
robot’s center of gravity (COG) is, and then determine where the robot’s feet are, and then
check to see that the COG is over at least one of the robot’s feet, preferably over a line
between the robot’s feet, or at most, very slightly offset from that line (but not too far). If
the robot’s COG is too far to one side, the robot’s brain must send the command to flex the
leg on that side to tilt the robot ever so slightly in the other direction, bringing the COG to
a more stable location, without going too far in the other direction. And if the robot is
carrying something, all those values need to be recomputed on the fly.

Make a Raspberry Pi-Controlled Robot

Introduction

Figure 1-2. More than the Pi can handle

So there are several advantages to using wheels. First, not having to balance means that the
Pi's computing power (and servo power) can be spared for other tasks, such as taking temper-

Chapter 1 3

Introduction

4

ature samples or moving the robot arm. Second, depending on the type of wheels you
use, a wheeled vehicle can go all sorts of places that a bipedal robot can’t. And third, wheels
can also be cool—I refer you to R2-D2, the Mars Curiosity rover, and the Mars Exploration
rovers (Spirit and Opportunity) for examples of pretty cool wheeled robots. Figure 1-3
shows the Mars rovers.

Figure 1-3. Three bad-assed wheeled robots

To increase the coolness factor to monster-truck levels, | decided to go with oversized
wheels; it's common knowledge that almost any wheeled vehicle looks seven and a half
times better with bigger tires. Figures 1-4 and 1-5 prove my point.

Figure 1-4. Small tires: not so awesome

Make a Raspberry Pi-Controlled Robot

Introduction

Figure 1-5. Big tires: AWESOME!

This brings up more design challenges, however. Larger wheels tend to be heavier, and it's
always—always—a good idea to keep your robot or rover as light as possible. A heavy robot is
apower-hungryrobot, and batteries and engines are heavy enough to begin with. Large wheels
also have greater rolling resistance, though rolling resistance comes more into play at higher
speeds and higher efficiencies than this rover is likely to experience. My solution: | used the
wheels from a Power Wheels vehicle. They're large and impressive, but because they’re made
of plastic, they hardly weigh anything. Of course, that led to further challenges, such as mount-
ing those wheels to a non-Power Wheels axle, but as you'll see in Chapter 7, those issues were
solved as well, often with a combination of screws, nuts, bolts, and generous applications of
epoxy and cold-weld.

Thefinal design, assuming you follow these step-by-step instructions, can be seenin Figure 1-6.

Chapter1 5

Introduction

Figure 1-6. Finished rover

As you build it, of course, you'll need to keep pace programming it to interact with the
sensors you choose to use with it. | do all of my Pi work in Python, and that’s what you'll
see in this book. If you're not familiar with this powerful, more-than-a-scripting language,
flip to Appendix B for a quick introduction. The Pi was designed to run Python, and most
of the libraries and modules you need are a quick sudo apt-get command away, with a
few exceptions that I'll walk you through as you need them. In Chapter 10, as | introduce
you to some sensors, I'll also show you the Python code necessary to work with each one.
In most cases, the code you write to test the sensor can be saved and used as a function
(getTemperature(), for instance) in the final rover code. In Chapter 11, I'll give you a final
working program, but if you've been following along, you'll have written all the bits and
pieces already, so it won't be anything new to you.

As you go through this book, following along breathlessly as | impart this robot-building
wisdom, keep one thing in mind: these build instructions are meant to be suggestions. If
you can't find the same aluminum channel | used for the robotic arm, or if you have an idea
that you feel would work better, by all means, use it! And then tell me about it! | always
look forward to seeing what my fellow builders come up with.

If you're ready, let’s get started by taking a look at the Raspberry Pi.

Make a Raspberry Pi-Controlled Robot

Because the robot we're building is using the Raspberry Pi for its brain, giving you a short
introduction to this nifty little computer isn't a horrible idea. If you're already familiar with it,
feel free to skip this chapter. Otherwise, read on for a quick tour around the board (Figure 2-1).
As of this writing, the Raspberry Pi Foundation has released a new version of the board, called
the model B+, with extra USB ports and more GPIO pins. If you have one of these newer boards,
I'll go over its features a bit later in the chapter.

Figure 2-1. The Raspberry Pi

Model A and Model B

Model A and Model B

We can start the tour at the Ethernet port, as that’s pretty much common ground for any
computer you're familiar with. It's a standard 10/100 port—nothing special about it at all.
If you're not familiar with the terminology, the “10/100” stands for 10 and 100 megabits
per second (Mbps), the two worldwide standard data rates for Ethernet communication.
Older computers are limited to 1T0Mbps, and newer computers are capable of 100Mbps,
but they can usually communicate at slower speeds to maintain backward compatibility.
All Ethernet networks are connected to a central hub or switch, and that connection is
either wireless or via twisted-pair cables attached to an RJ-45 connector that closely re-
sembles an old analog phone jack.

Moving counterclockwise around the board, the next thing you come across is the pair of
USB ports (Figure 2-2).

Etheimnt

L

Figure 2-2. USB ports

Both these USB ports and the LAN (Ethernet) port are handled via the onboard LAN9512
chip. According to the datasheet, the chip is capable of 480 Mbps USB 2.0 speeds, and fully
integrated 10base-Tand 100-baseTX Ethernetsupport. Whatthat means, forlack of a better
description, is that almost any device you plug into your desktop or laptop machine—
printer, external hard drive, USB fan—can be plugged into your Pi.

These ports let you plug in a keyboard or mouse, and control your Pi that way. You can
even pluginaUSB hub to connect more devices to your Pi. This isa common configuration
if you use a WiFi USB dongle; you can plug the dongle into one of the Pi's USB ports, and

8 Make a Raspberry Pi-Controlled Robot

Model A and Model B

plug your USB hub (Figure 2-3) into the other. (Don't try to plug a WiFi USB dongle into a USB
hub—you’'ll most likely get strange behavior. Some devices need to be connected directly to
the Pi.)

If you use a USB hub, get one that’s externally powered. The Pi doesn’t provide a
lot of current, and relying on it to power both a hub and the connected devices
can lead to even more strange behavior from your Pi and the devices. On the
simplest level, the devices might noteven getenough powertowork. Onthe other
hand, the hub I use is not externally powered, and it works fine, so your results
may vary.

Figure 2-3. Belkin F5U407 mini USB hub

The next step on the path around the board is the row of five status lights (Figure 2-4). In order,
from the center of the board outward, they're labeled OK (or ACT, if you have the Pi version 2.0),
PWR, FDX, LNK, and 10M (or 100), and are green, red, green, green, and orange, respectively.
The FDX and LNK lights may be orange, again depending on your board version.

Figure 2-4. Status lights

These lights can be helpful for troubleshooting your Pi. Because the Pi doesn’t have a BIOS like
most computers, nothing gets printed to the screen if there’s a boot failure, leaving you to
interpret the lights. The green ACT light flickers when there is SD card activity, such as writing
or reading to memory. It should always be a bright green when it’s lit; a dull green glow means
that no boot code has ever been executed. The red PWR light means that the board has 3.3V
and is powered properly. The FDX and LNK lights are related to connectivity: FDX means there
is a full-duplex Ethernet connection, and LNK means that there is activity on that connection.
Finally, the 100 light means that there is a 100 Mbit Ethernet connection.

Chapter 2

Model A and Model B

10

Moving beyond the status lights, we come to the audio jack. It takes a standard 3.5mm
headphone plug. Next to it is the composite video RCA jack (Figure 2-5), where you can
connect to an external video device—such as a pair of video goggles like the MyVu set.
The Pi doesn’t support RGB video, unfortunately; connecting it to a monitor will require a
monitor with an HDMI port.

Etharmat

CTRL

Figure 2-5. Video RCA jack

The next stop on our tour is arguably the coolest thing about the Pi. The two rows of pins
sticking straight up are the general-purpose input/output (GPIO) pins (Figure 2-6). They
enable the Pi to interact with the physical world—getting input from sensors and con-
trolling outputs like motors, servos, and lights. You may remember when laptops and
desktops had serial and parallel ports, which could be used, with a little effort, as interfaces
to the computer hardware. They've pretty much been replaced by USB ports. With the Pi,
we have a computer that gives us access to the hardware again. Using the GPIO pins, you
canimmediately control atleast eight servos—enough fora quadruped robot, forexample.

Using the Python RPi.GPIO library, which is included in later versions of the Pi’s Raspbian
operating system, we can turn specific pins into INPUTs or OUTPUTs. If you've used the
Arduino integrated development environment (IDE) at all, you'll recognize the concept.
With the Arduino, to set up a pin as OUTPUT and send voltage to it, you use the following:

pinMode(11, OUTPUT)
digitalWrite(11, HIGH)

Make a Raspberry Pi-Controlled Robot

Model A and Model B

Errumrriesl
-5

Figure 2-6. GPIO pins

With the Raspberry Pi, you use this:

import RP1.GPIO as GPIO
GPIO.setmode (GPIO.BCM)
GPIO.setup (11, GPIO0.OUT)
GPIO.output (11, 1)

A bit more complicated, but then the Pi is a bit more complicated than the Arduino. Likewise,
setting up a pin as an INPUT (with a software-based pull-up resistor, no less!) is simply done as
follows:

GPIO.setup (11, GPIO.IN, pull_up_down = GPIO.PUD_UP)

If you're not familiar with the concept of a pull-up or pull-down resistor, I'll go over it when we
get to switches and sensors in Chapter 10.

Continuing our trip around the board, we come to the SD card. This is your Pi’s combination
hard drive and RAM, so when you choose your card, give yourself room to grow. | usually rec-
ommend 16GB cards, but on the other hand, | just saw an advertisement for a 256GB SD card
for around $100, so I'm torn. I'd ordinarily consider a card that size to be unnecessary, but if
you're going to be dealing with video files or a lot of sensor data (as this rover may do), it might
be worth the expense.

Atany rate, I'd suggest getting a name-brand card, as personal experience has shown that some
of the cheap generic cards are unreliable and prone to failure. At least get in the habit of backing
up your card regularly, using either Linux’s dd command or a similar Mac or Windows tool. It’s

Chapter 2

11

Model A and Model B

12

difficult to describe the pain you feel when days and weeks of work are rendered useless
by a simple SD card meltdown.

Next up: the power_in port. It’s just a 5V micro USB B port (Figure 2-7), similar to the one
on many cell phones or tablets. As a matter of fact, the easiest way to power your Pi is to
use a standard cell phone charger. Be aware, however, that you may have mixed results,
as different chargers deliver different amounts of current, and the closer you can get to 2A
of current delivered, the better. If your Pi doesn't work—or acts strangely—with one
charger, just try another one. You'll need at least 1A of power for the Pi to run without
hiccups and glitches.

Figure 2-7. Micro USB B plug

with 5 volts and only 5 volts! Those of you familiar with the Arduino are
probably used to just plugging in a 9V battery and going merrily on your
way. If you try that with the Pi, you'll have a nice fried, dead paperweight on
your hands. If you're unsure of your charger, check its output with a volt-
meter. If you're using batteries, funnel them through a regulator before
sending the power to your Pi.

':-\a' The Pi does not have an onboard voltage regulator, so you must power it

Make a Raspberry Pi-Controlled Robot

Model A and Model B

The lastimportant item on the periphery of the board is the HDMI port. Some would argue that
this is where the Pi truly comes into its own, as it's capable of outputting full 1080p graphics,
with 1 gigapixel/sec processing power. The onboard GPU can do Blu-ray Disc—quality playback,
using OpenGL and OpenVG libraries on the chip.

That chip is located in the center of the Pi (Figure 2-8). It's a Broadcom PCM2835 system on a
chip (SoC) and has an unmodified speed of 700MHz. It can be overclocked up to 1GHz if you
so desire, though be aware that it can lead to some system stability issues. At its normal speed,
it doesn't get hot enough to require cooling or a heat sink. It can be compared, performance-
wise, to a Pentium lll, with the graphics capabilities of a first-generation XBox. Not bad for a
little computer about the size of a credit card.

Figure 2-8. The Broadcom PCM2835

Chapter 2 13

Model B+

Model B+

In July 2014, the Raspberry Pi Foundation announced the existence (and release) of the
Raspberry Pi B+, an upgrade to the existing model B for the same price (Figure 2-9). It's
been enthusiastically received by the Pi community. Let’s take a look at how it differs from
the original model B.

Figure 2-9. The model B+

GPIO

Probably the biggest difference in the B+ is the addition of 14 GPIO pins, for a total of 40.
Luckily, the pinout of the first 26 pins remains the same, so pin connections designed to
work with the first version will still work with the updated one. The additional pins give
you nine more general-purpose pins, three more ground pins, and two specialized 12C ID
EEPROM pins. Those two pins, numbers 27 and 28, are used to connect an I2C EEPROM, or
Electrically Erasable Programmable Read-Only Memory chip. Those two pins are checked
when the Pi boots up to see whether they're connected to a board; in this way, the Pi is
able to detect a connected device and configure the GPIO pins to work with it. If you don’t
have such a board, leave those pins free, and have fun with the extra nine general-purpose
pins.

14 Make a Raspberry Pi-Controlled Robot

Where to Get Help

USB

The B+ also has four USB ports instead of two, possibly making a separate USB hub unnecessary.
The only thing that may be an issue is that USB 2.0 specifications state that each port should
provide 5V and 500mA, for a total of 2A across all four ports; a few users have reported that the
model B+ provides a total of only 1500mA across the four ports, so you may need that powered
hub after all if you need to power more than three devices.

Power

The new model B+ also requires less power than its predecessor—quite a feat considering all
of its extra features. The Pi Foundation replaced the old linear voltage regulators with switching
regulators, which had the effect of trimming up to 1W of power from the Pi’s consumption. If
you're using batteries to power something like a robot, this is great news. The Pi Foundation
also added a dedicated low-noise power supply for the audio circuit.

Shape

Finally, of course, the Pi Foundation moved stuff around and made the board a bit more stream-
lined. The foundation lined up the USB connectors with the edge of the board, combined the
composite video and 3.5mm audio jack, and even added four evenly spaced mounting holes
for mounting the Pi by using standoffs. There will certainly be add-on boards coming soon,
designed to take advantage of the extra GPIO pins and EEPROM support, and the four mounting
holes should make connecting it securely to the Pi an easy task. All in all, the model B+ is a
definite step forward, Pi-wise.

Where to Get Help

It's true: as easy as the Raspberry Piis to get started and operate, at times you're going to need
help, sometimes more than a simple Google search can provide. There are a few places you
should be familiar with before you go stomping off into the great unexplored expanses of the
Internet, looking for answers.

The first place is on the Pi itself, and that means using Linux’s man command. It's short for
manual, and can be invoked for darn near any Linux command or function you're having prob-
lems with. In fact, my only beef with the man command is that it can be too comprehensive; the
help pages for the simple 1s command (which lists the contents of a directory) go on for pages
(Figure 2-10), giving you more information than you ever wanted or needed to know about
1s. Still, although man can be overwhelming, it provides a lot of information.

Chapter 2

15

Where to Get Help

16

. e .

Fle § & M gwm

[T 1] PEED LBl
B

e i iy e

& |

L& lEtaml 549 1]
AR

e b A ot e L [s ¥ L]
Al e Mg e b~ gl gl L
E

Py g s in ey wfosew ew e [ef sbeed e
—

- akl
-y et e ey s AR

] al il w88
e T e

e e Te T T T S ot = o

Figure 2-10. The man(ls) pages

The second way to get help is with Python’s help function. Just typing help() at the Python
prompt brings you to the interactive online help utility. When you first bring it up, it gives
instructions on how to use it, like telling you to type “modules,” “keywords,” or “topics” if

you're totally lost. Typing abs at the prompt, on the other hand, gives you the specific
instructions, as you see in Figure 2-11.

L e—— W
= L
gl o ad | Sy ke o mblp el Lo
i
L R

R T SR T

Figure 2-11. The help() prompt

You can go directly to the help page for a function by just including it as an argument to
help—help(abs), for instance. If you need help with a function not in Python’s default

libraries, you'll have to import that library first. For example, to get help with the square
root function, you type:

import math
followed by:

help(math.sqgrt)

Make a Raspberry Pi-Controlled Robot

Where to Get Help

If, however, neither of those onboard utilities have what you need, you'll have to ask other
humans. In my experience, two sites stand out for both comprehensiveness and general help-
fulness among fellow Pi programmers.

The first is the forum on the Raspberry Pi website. As of this writing, there are 12,000 topics in
General Discussion and 2,500 in the Python subforum. Staff and engineers from the Pi Foun-
dationitselffrequently stop by on the forum; some other members have been there since before
the Pi existed in reality. There are subforums dealing with topics ranging from graphics pro-
gramming and gaming—there’s even a For Sale section. It's definitely worth your time to stop
by and create a profile.

The othersite thatis well worth visiting is Raspberry Pi Stack Exchange. On this free site, anybody
can ask (and answer) questions—no registration is even required. It doesn’t have nearly the
amount of trafficas some other programming sites, but it has the advantage that itis specifically
geared toward the Pi. If you're stuck, browsing its questions can sometimes be helpful.

Asforother sites, Stack Overflow—every programmer’s best friend—has many, many questions
dealing with the Pi, so it's normally worth your time checking out as well. And though | knocked
it at first, many times a good Google search will help. No matter how bizarre or off-the-wall your
project may be, there’s a good chance that somebody, somewhere has run into the same wall.

And speaking of asking and answering questions: as your experience grows, jump in and help
answer questions on both sites! The Raspberry Pi community is definitely that—a community
—and there is always someone who is just getting started who may benefit from your experi-
ence. Before you know it, you'll be helping and getting help like thousands of others!

That was a short, down-and-dirty introduction to the Pi. If you have no experience setting it up,
jumpto Appendix A, where I'll walk you through the steps of downloading an operating system,
loading it onto the Pi, and so on. Otherwise, let’s go to the next chapter, where I'll give you a
quick introduction to Linux.

Chapter 2

17

‘D
~J

The Raspberry Piis arguably one of the world’s most popular tiny computers. It's cheap (around
$35), easy to get, relatively powerful for its size and price, and easy to start using: plug in a
keyboard, a mouse, and a monitor and start programming by using Python or Wolfram Math-
ematica or Scratch, the kid’s programming language. Sometimes, you don’t even need the
keyboard, mouse, and monitor!

Infact, it's so easy to get started that many users completely forget (orignore) that the operating
system it usually runs, Raspbian, is based on Debian, a distribution of a powerful operating
system, Linux (Figure 3-1). Your programs don’t even have to be written in Python; the Pi’s Linux
roots mean it can run C, C++, Java, or even (if you're particularly masochistic) assembly code.

A World of Little Computers

Many small computers exist on the market, manu-
factured by companies like Parallax or Intel. They are
marketed to both professionals and hobbyists, and
are commonly used for things like after-market on-
board car computers (carputers) and sensor loggers.
Parallax makes an impressive eight-core microcon-
troller board called the Propeller, and Intel’s newest
entryintothe marketis the Galileo. The BeagleBone,
by the BeagleBoard Foundation, is another popular
board, and another new one on the market is Rad-
xa's Rock, with a quad-core CPU, integrated WiFi,
and an infrared receiver.

The main difference between these other, small-
form-factor computers is price. Most of the Pi alter-

natives hover around the $100 mark, about three
times as costly as the Raspberry Pi. Still, many of
them are more powerful in terms of speed or com-
putational ability, so if the Pi isn't perfect for your
needs, chances are one of the others will be. For
instance, the Radxa Rock sports a quad-core pro-
cessor and 2GB of onboard RAM and is able to run
both the Android and Ubuntu operating systems.
The BeagleBone’s processor, on the other hand, is
comparable to the Pi's (a 7Z20MHz ARM processor),
but it also runs both Android and Ubuntu, and can
be programmed with a web interface, using a ver-
sion of JavaScript.

19

[Intro to Linux

20

4 ®
- 0
- @
m o
r' 3
§ e

-
&

Figure 3-1. | sense no Linux here

Because Linuxis the base of the Pi's operating system, let’s do a short introduction to Linux,
for those of you who'd like to know more about the OS and how to use it. Since its creation
nearly 25 years ago, Linux has been considered the “geek’s OS,” with its proponents being
viewed as the stereotypical glasses-wearing, pocket protector-having, socially inept tech
crowd. In the past few years, however, Linux has become a bit more popular, and more
people than you'd expect are using it. Although there doesn’t seem to be one overwhelm-
ing reason for its increase in popularity, some tech experts (including yours truly) suggest
thatits price point (free, in most cases) and its adaptability are contributing factors. Poking
around underthe hood of your Windows or Mac computer can be difficult, but Linux allows
you to completely rewrite, compile, and install your own kernel, making it uniquely adap-
ted to your needs. It's also a much smaller OS, with some versions able to be installed on
and run from a USB flash drive.

| can’t teach you how to become a power user in a single chapter, but | can definitely make
your journey through Linux Land a bit more comfortable. If you're already a Linux geek,
feel free to skip this chapter, but if you're not, read on for a quick primer.

Linux was first released by its creator, Linus Torvalds, in 1991. It has its roots in Unix, BSD,
MINIX, and GNU—all of them successful or unsuccessful attempts to create a completely
portable operating system. Linux is written in C, and was originally intended to run on the
Intel x86-based architecture. Since then, it has been ported to almost every imaginable
device, from Android phones to mainframes and supercomputers to tablets to refrigera-
tors. It's even running on computers on the International Space Station, as NASA decided

Make a Raspberry Pi-Controlled Robot

Structure

it needed something more stable than Windows. In fact, Linux has been placed in so many
applications and devices that it is now the most widely adopted operating system in the world.

When you interact with the Pi, you'll most likely be doing a lot of work in the terminal. With your
Pi desktop up and running, double-click the LXTerminal icon to open the Pi’s terminal prompt
(Figure 3-2).

e

e LW e jle

-p::.l anpherrypl -.1

Figure 3-2. The Pi terminal prompt

The command line you're seeing in Figure 3-2 shows that you're the user pi logged into the
machine raspberrypi, and you're in the home directory. If you were to move to a different
directory, by using the cd command, the command line would show that location:

pi@raspberrypi ~/Robotics $

Structure

Linux, like other operating systems, is completely built around files and the filesystem. A file
can be described as any piece of information—Dbe it text, image, video, or otherwise—that is
identifiable by a filename and a location. The location is also called the directory path, and keeps
afile unique because technically the location is part of the filename. In other words, /home/pi/
Myfiles/file.txt is a different file than /home/pi/MyOtherFiles/file.txt.

Filenames are case sensitive in Linux, meaning that file.txt is different from File.txt, and both are
different from FILE.TXT. There are five categories of Linux files:

o User data files

« System data files

« Directory files, or folders

« Special files representing hardware or placeholders used by the OS

« Executable files

Each user has a default /home directory in Linux, and within that directory you have permission
to create, edit, and delete files all day long. However, if you want to edit system files, or those
belonging to another user, you'll need the permissions of a special user—the superuser.

This superuser, also referred to as the root user, can edit any file in the system, including low-
level system files. Because of this ability, Linux users don't log in as root unless absolutely nec-

Chapter 3

21

Commands

22

essary; when they do assume the root login, they log in, do what they need to, and then
log out again. There’s a saying among Linux users: only noobs log in as root.

There’s a shortcut to gaining the powers of a superuser while still logged in as yourself: the
sudo command. sudo stands for superuser do, and simply tells the system to execute the
following command as if it were the root user issuing the command. The system will ask
for the root password and then execute the command. You normally need to use sudo
when you update or install files (hence the sudo apt-get install command), and when
you edit configuration files like /etc/network/interfaces. On the Pi, you also need to be the
root user when you access the GPIO pins; this means that any Python program you write
that accesses the pins needs to be run as root:

sudo python gpio-program.py

does not hold your hand or double-check with you when you issue a com-
mand using sudo. It’s up to you to be especially certain you know what that
commanddoes beforeyou hitEnter. Itis entirely possible to completely erase
the contents of your hard drive with one poorly written sudo command!

a sudo confers great power and thus requires great responsibility. The system

Commands

Togetaroundin the Linux command-lineinterface (CLI), you use text commands to display
information and run programs. You should be familiar with commands like the following:

1s
List files in current directory

cd
Change directory

pwd
Print working directory

rm filename
Remove (delete) a file

mkdir directoryname
Create a directory with the name provided

rmdir directoryname
Remove (delete) empty directory

cat textfile
Display contents of a text file in the terminal

Make a Raspberry Pi-Controlled Robot

Commands

mv oldfile newfile
Rename a file

cp oldfile newfile
Copy afile

man commandname
Display Linux manual of a given command

date
Read system date/time

echo
Echo (print) what is typed back in the terminal

grep
Search program that uses regular expressions

sudo
Perform as root user

./program
Run a program

exit
Quit terminal session

Most of these are fairly self-explanatory, but if you ever get confused, the man command is
undoubtedly the most useful. If you are unsure of what a particular command does or what
parameters or flags it uses, typing man commandname into your terminal brings up the manual
page for that command, with more information than you'd ever want to know (Figure 3-3).

Fl §& i o

(1)] P ———— LRl
)
L] fwh sy e g g
A
la |ETam| IERE|
[T
i el e e et e LS [sarmest i ey by el
Ll e T T ™ T T AT
E

Py g s in ey wfosew ew e [ef sbeed e
-

a akl

-y et e ey, s AR

] aliaai 88

. il LRl e el

Figure 3-3. First page of man Is

Chapter 3

23

Navigation

24

When you first log in to the Raspberry Pi, you'll find yourself in your home directory, often
illustrated in code as ~/. Typing 1s will show you all files and directories within that home
folder, and you can then cd to go into other directories. If you need to move to a parent
directory, you can type cd ../ tomove up onelevel,orcd ../../tomove up two levels,
and so on. If you get lost, typing pwd will tell you the full file path of the directory you're in
—useful if you're several levels deep in a folder path like /home/pi/robots/test/pi/servos/
test and you've forgotten exactly how deep you are. In any case, if you are truly lost, typing
cd with no arguments will always take you back to your home folder—a handy shortcut.

Navigation

Let'sdo a quick exercise to give you some practice moving around in the filesystem without
using the file explorer graphical user interface, or GUL. (I'll repeat: if you're already com-
fortable in Linux, | won't be offended if you skip this part and move to the next chapter,
where | discuss much more interesting things like rover parts.) Open your terminal, and
make sure you're in your home directory by typing cd ~/.

Now make a subdirectory by typing the following command:
mkdir exercise

Then, to add a subdirectory, type:
mkdir exercise/subdir

Now you can navigate into that directory by typing:
cd exercise/subdir

Once you're in there, create a text file using the echo command and the greater-than (>)
symbol:

echo "This is a test file" > file.txt

In the icongraphy of Linux, the greater-than symbol looks like a sideways funnel, and that
isessentiallyitsfunction:it funnels the echo commandinto afile. Now, if you list the contents
of the file with 1s, you should see file.txt.

Now let’s rename it. You can do that by typing the following:
mv file.txt file2.txt

file.txt is now gone, replaced with file2.txt. Now let’s copy it to one directory up:
cp file2.txt ../file2.txt

If you now move up one directory with e¢d ../ and list the contents with 1s again, you'll
see two items: file2.txt and subdir. Because subdir still has file2.txt in it, you can’t just do a
rmdir on it to get rid of it. You either have to empty it first, or tell the OS to remove it and
all files inside it. To remove the file first from where you are, you can type:

Make a Raspberry Pi-Controlled Robot

Navigation

rm subdir/file2.txt
Then you'll be able to remove subdir with a simple rmdir command.

If you prefer to remove the directory and all of its contents in one fell swoop, use the -r flag,
which will promptly delete subdir and all of its contents, including other directories and their
files:

rm -r subdir

Use the -r flag with caution: it will delete everything in the top directory and all directories
below it! We recommend staying safe and sticking with just rmdir, without the -r flag. That
way, yoUu'll be unable to delete a full directory, which may save your files from your inattention!

I'd like to conclude with a quick time-saving tip. If you press the Tab key in the middle of a long
filename, the terminal will fill in the rest of the name for you as far as it can, saving you some
typing. So, for example, if you need to copy mylongfilename.txt, type cp mylong and press Tab
and the rest of the name will be filled in for you.

If you happen to have another file in the same directory called mylongfilename2.txt, pressing
Tab will make the terminal fill in up to mylongfilename, and then you can finish the name with
whichever one is applicable.

That is a quick-and-dirty introduction to Linux. The more you work with the Pi, the more com-
fortable you'llbecome, so don’t be surprised if you find yourself switching your other computers
to Linux as well.

Chapter 3

25

As you've seen, the Raspberry Pi is a full-fledged computer, if a bit smaller and underpowered
compared to what the average user is accustomed to. Aimost immediately after taking it out
ofthe box, you caninsert aformatted hard drive (the SD card), plug in an HDMI-capable monitor,
add a USB keyboard and a mouse, and start computing. So even if your desk looks like
Figure 4-1, the Pi is so small that you can power it up and start programming. It doesn’'t even
need airflow; even when it's overclocked, the ARM processor doesn't get hot enough to need
any appreciable cooling, so you can put it in a drawer or a project box and run it that way. (Yes,
you can even put it in an Altoids tin, though there are a few strategic cuts you'll need to make
to enable it to fit.)

Figure 4-1. My desk on a good day

27

Historical Problems

28

Once it's running, plug in an Ethernet cable and connect the Pi to your modem or router,
and you can surfthe Web, install updates and upgrades, change your Facebook status, and
any number of other miscellaneous tasks that require Internet access, using either the
built-in Midori or NetSurf browsers, or a third-party browser such as Firefox (called Ice-
weasel on the Pi) or even Google Chrome (called Chromium on the Pi).

But what if you don’t want your Pi to be tethered to your modem or router, or even your
desktop? After all, one of the huge advantages of the Pi is its size and portability; it'd be a
shame to be stuck working at your desk. It'd be especially inconvenient to have a robot’s
brain (for example) tied to a modem, and the robot’s mobility limited by the length of
whatever Ethernet cable you happened to have lying around. And forget moving around
outside. Robots need to be mobile, not tied down.

Perhaps a future version of the Pi (model C?) will come with an onboard wireless chip, even
though it would probably make the Pi a bit larger. 'm not aware of any plans for a wireless
model, though, which means that for the time being we've got to be proactive and add a
wireless USB adapter, also called a dongle, to give the Pi wireless connectivity.

Historical Problems

If you've been playing with the Raspberry Pi from the beginning, you may be aware of a
few problems getting it to work wirelessly. Some of those problems have stemmed from
the Pibeing Linux based. Other problems arise from the Pi’s use of an ARM processor. (That
may seem strange, as ARM processors are at the heart of millions of smartphones world-
wide, but unlike the Pi, cell phones don’t use a USB wireless adapter to connect to WiFi.)

It used to be that the mark of a true geek was someone who managed to
get the wireless working on a Linux installation. | remember earning such a
badge of honor on my Ubuntu 7.04 laptop, back in 2007. Wireless drivers
that actually worked were few and far between, and many times you had
to use a special tool that hacked the Windows drivers so Linux could use
them. That tool, called ndiswrapper, is a Linux module that allows Ubuntu
to use Windows drivers for some wireless cards, because the open source
driver for the card either doesn't exist or doesn’t work for whatever reason.

Times have changed, of course, and (with a few unremarkable exceptions) Linux’s wireless
problems have become virtually nonexistent. That is, until early adopters fired up the P;j,
plugged in a USB dongle, and tried to get online in the coffee shop (Figure 4-2).

Make a Raspberry Pi-Controlled Robot

The Ralink Chipset

| i L

Tl" anghad s ppl B Lecaiiflg B
0 Ny wirn e aniermnne

L R N)l U ST | A

pigrespharrymi - 0

Figure 4-2. No happiness in Wireless Town

If the Pirecognized the wireless adapter at all, it seemed a miracle. Most of the time the adapter
didn’t fire up, but if it did, the Pi didn’t recognize it as a network device. Linux drivers may or
may not have existed for different devices, but even if they did, they didn’t work on Raspbian
for whatever reason. Raspberry Pi forums filled with the lonely cries of stranded users: “How do
| get wireless working on my Pi?” Luckily, the Pi community worked together and determined
that all you need is the right adapter.

The Ralink Chipset

As it turns out, only wireless adapters with certain chipsets play nicely with the Pi, something
that many of us found out the hard way. Chances are extremely good that the D-Link or Netgear
adapter you picked up from the big box store will run sketchily on the Pi, if it runs at all. Some-
times you may get lucky; if the chipset is compatible and the adapter doesn’t draw too much
current, you're golden. If, however, the adapter draws too much current, you'll most likely ex-
perience other problems, such as sporadic mouse and keyboard connectivity problems, and
evenintermittent shutdowns. For that reason alone, it's always a good idea to plug your wireless
adapterdirectly into your Pi's USB port, and plug the mouse and keyboard—if you're using them
—into a USB hub, assuming that you're using a nonpowered hub. If you use a powered USB hub,
you can plug the adapter into it without problems. Otherwise, the Pi may not send enough
current through the hub to power the adapter.

The thriving Raspberry Pi community has experimented with any number of adapters, saving
us from having to go through them all one by one. As it turns out, those dongles with the Ralink
RTL8188CUS chipset will work almost without exception. The Pi community has found that the
following two adapters work excellently:

« Edimax EW-7811UN (Figure 4-3)
« Ralink RT5370 (Figure 4-4)

Chapter 4

29

Making It Work: The GUI Way

30

Figure 4-3. Edimax EW-7811UN

Figure 4-4. Ralink RT5370

Both of these are available on Amazon and eBay for reasonable prices (less than $10). In
fact, | suggest you order more than one; they’re so small that I've actually lost a few, and
when (not if) you order another Pi, you can equip it as soon as it arrives. If you choose to
go off on your own and explore the compatibility of a different adapter and/or chipset,
and if you have some luck getting it to work, you're encouraged to post your findings on
the Raspberry Pi forums.

Making It Work: The GUI Way

When you get your adapter, plug itinto the Pi. On your Pi’s desktop, you'll see anicon called
WiFi Config (Figure 4-5). Double-clickit,and you'll see the configuration screen (Figure 4-6).

Make a Raspberry Pi-Controlled Robot

Figure 4-5. The WiFi Config icon

D ML I g tastamiia | wa

=i L] Pl gl GEaLS Fare mpe Sag1pEes vl
ImE nvsags gl 1 ="

ol i i)

Eruryin =

Ll

Vet

L= g i

Eatitiarl | Baiwwrwid] ddis | |

Nl Hataa [.
Hilagime |- alill = |
festmam 1 =]

Figure 4-6. The Wifi Config screen

Making It Work: The GUI Way

The adapter, wlan0, should show upin the top drop-down list, and your wireless network should
show up below that. With your network selected, click the Manage Networks tab. Select your
network and click Edit, which will bring up the NetworkConfig window (Figure 4-7).

Enter your network information and click Save. Now just go back to the Current Status tab and
clickthe Connect button. The adapter should negotiate a lease from your DHCP-enabled router
and hop onto your wireless network. To make sure it worked, in your terminal window, type
ifconfig. You should see three Ethernet adapters listed: etho, 1o, and wlan0 (the newest one).
Assuming you're still connected via Ethernet cable, your eth® adapter should have an inet
address listed, and now your wlan@ adapter should have one as well. Voila! Your wireless is now

working!

Chapter 4

31

Making It Work: The Command-Line Way

L Bt 1-..'_1rr|
Ryl bl W7 A FuFuns 1FUED =]

Energman rew =

T E
E_g

TR TTE I LT = |
o | 3

[

Figure 4-7. NetworkConfig window

Making It Work: The Command-Line Way

On the other hand, perhaps this whole process didn't work. Or perhaps you're feeling
nostalgic for the old days, when you had to wire up your adapter (no pun intended) with
bubble gum and baling wire. So let’s look at the process of setting up a wireless adapter
using the command line and editing some files.

It's pretty easy, and requires only one package and one file edit. First, in your terminal,
update and upgrade your Pi:

sudo apt-get update
sudo apt-get upgrade

This is always a good idea before a computing session when you're going to be installing
new packages and software. Many Linux distros notify you of available updates; Raspbian,
however, does not, so checking once a day is a good habit to get into.

Once you're upgraded, try the following:

sudo apt-get install wpasupplicant

32 Make a Raspberry Pi-Controlled Robot

Setting a Static IP Address

You'll most likely get a message stating that wpasupplicant is already the newest version; |
believeit'sincluded in all newer releases of Raspbian. In case you have an old version, however,
you'll need to download and install it.

Once it's installed, use a text editor to open its configuration file:

sudo nano /etc/wpa_supplicant/
wpa_supplicant.conf

Here is where you put in your network information. (Coincidentally, it's where the information
is stored if you enter it via the NetworkConfig GUI in the previous section.) Leave the first lines
of the file as they are, but add the following lines:

network={
ssid="_your network id_"
psk="_your network key_ "
proto=WPA
key_mgmt=WPA-PSK
pairwise=TKIP
auth_alg=0PEN

}

Replace your network id and your network key with your network name and key. (Your network
key is the password you've set to log into your network from your devices.) It's true, you're
putting your network password into a configuration file, and it's in plain text. For those of you
with the tinfoil hats, this means that if your Pi falls into your arch-enemy’s hands, that person
will have the key to your network. Unfortunately, there’s no way around this. It is a configuration
file, after all, and the Pi’s operating system must be able to “read” it. You can only hope that any
nemesis who gets their hands on your rover is not Linux-savvy.

You may have to fool with the settings to match your network configuration; some older ver-
sions of wpasupplicant won't work with WEP authentication. Think of it as a kick in the pants to
change your security settings if you haven't already; WEP is not a secure standard.

Save the file and reboot your Pi:

sudo shutdown -r now

When your Pi comes back up, your wireless adapter should connect to your WiFi router.

Setting a Static IP Address

Getting your wireless working, although impressive, is only half the battle. You'll also need to
set a static IP for your adapter. If you don't, it's entirely possible that every time you power on
your Pi, it'll receive a different IP address from your router. Because you need to log in remotely
in order to control your robot (for those times you're controlling it on your home network),
you're going to need to know the IP address it’s using. When you set a static IP, the router will
always assign the same numeric sequence to your Pi’s wireless adapter.

This part is easy. In your terminal, open your interfaces file:

Chapter 4

33

Setting a Static IP Address

34

sudo nano /etc/network/interfaces
If this is the first time you've opened thefile, it's probably going to look something like this:

auto lo

iface lo inet loopback
iface ethO® inet dhcp

allow-hotplug wlan®

iface wlan® manual

wpa-roam /etc/wpa_supplicant/wpa_supplicant.conf

iface default inet dhcp
The first part of the file is fine, but you're going to edit the rest of it to connect to your
network without using DHCP. Just a warning: again, this requires putting your network
SSID and password in plain text in your interfaces file, so try to keep your Pi out of your
enemies’ hands.

Edit the file so it looks like this (I'm using my own address, netmask, and other values—
substitute your own):

auto lo

iface lo inet loopback
iface etho inet dhcp

auto wlan@

allow-hotplug wlan®

iface wlan® inet static

address 192.168.2.60

netmask 255.255.255.0

broadcast 192.168.2.255

gateway 192.168.2.1

dns-nameservers 8.8.8.8 8.8.4.4

wpa-passphrase my-passphrase

wpa-ssid my-ssid
The address is the IP address you'd like to assign to your Pi. The netmask establishes the
subnet you're using; unless you have a huge subnet in your house, chances are yours will
alsobe255.255.255.0.Thebroadcast value will mirror the first three values of your subnet,

with a . 255 at the end, and the gateway is the IP address of the router on your network.

You'll notice you don't need the wpa_supplicant and iface default lines; you can either
remove them or comment them out by placing a # at the beginning of the line. When
you've edited the file, save it, and reboot your Pi with the following:

sudo shutdown -r now

When your Pi comes back up, you should be connected to your network with full Internet
access and a static IP. To test it, open a terminal and first type ifconfig and make sure that
the address listed for wlan@ is the one you chose and entered in the interfaces file. Finally,

Make a Raspberry Pi-Controlled Robot

Running the Pi Headless

make sure you can access the network by typing ping google.com and see that you get some
responses.

Now that your Pi has a static IP, and because you enabled the SSH server when you set up your
Pi with the raspi-configtool (see Appendix A if you need help with this), you can now log into
your Pi with this command, giving it the password raspberry when you're prompted:

ssh -1 pi 192.168.2.60

If for some reason this fails, fear not—all is not lost. You will, however, need to connect physically
toyour Piwith a keyboard/mouse/monitor combination to proceed. (For whatit's worth, | always
physically connect to my Pi this way when I'm screwing with networking stuff. That way, | still
have access to it, even if | completely kill my network adapter.)

When you have the Pi hooked up to a monitor, open a terminal and type ifconfig to see exactly
what IP addresses you do have. You should have three adapters listed: etho, 1o, and wlano. If
the adapter is working and active, it should have an inet addr: listed in the second line of its
description. If there is no address listed, and you've followed all of the preceding steps, you may
have a defective wireless adapter. Try another dongle (preferably one with the chipset men-
tioned earlier) and see if you have better luck.

Network Addresses and Terminology

Ifyou find yourself confused by the various address-
es and netmasks and whatnot, don't worry too
much. The terminology and concepts can get tricky,
as they are used to define and control various por-
tions of the Ethernet networking protocol stand-
ards defined by the Institute of Electrical and
Electronics Engineers (IEEE). Certain IP addresses
are reserved for private networks (eg.,
192. xxx.xxx.xxx and 10.xxx.xxx.xxx). The
netmask defines what addresses are available with-
in a certain subnet (e.g., 192.168.2. xxx), and the
broadcast and gateway addresses are usually set
by (and configured with) your router. The gate

way address, for instance, is normally your router’s
IP address on the network, and usually ends in . 1.
The dns-nameservers | use are Google’s servers;
you may have others supplied by your ISP.

If that weren't complicated enough, soon devices
will be moving to the IPv6 standard, which will de-
fine 2128 |P addresses. Instead of a 192.168.2.1
format, IPv6 addresses are in hex, such as 7c:6d:
62:73:b3:84. When that happens, we'll gain more
addresses than we could ever use, but it will have
the effect of making the /etc/network/interfaces file
a bit more complex. Stay tuned.

Running the Pi Headless

No, this doesn't mean you're decapitating your Pi. A headless configuration refers to the practice
of doing your Pi-related work over a network connection, rather than attaching it to a monitor,
keyboard, and mouse. | do all of my Pi work this way, as do many other users. With the wireless
adapter working and a static IP address configured, you can store the Pianywhere in your house
or office, and simply log into it to work on it. It’s also how you'll be working with it after it’s set

Chapter 4

35

Setting Up an Ad Hoc Network

36

up on the rover, as you're not going to be following the rover around with a keyboard and
a monitor.

The main protocol you'll be using to log into your Pi remotely is Secure Shell, or SSH. If
you're using a Mac or a Linux machine as your desktop computer, you won't need any
special tools, as those machines have SSH clients built in. The Pi has a built-in SSH server,
which can be activated (if you didn't already) using the raspi-config tool (see Appen-
dix A for more information). If you're using Windows, you'll need a client called PuTTY. No
installation is necessary; just download the program and place it on your desktop or wher-
ever you'd like.

When you're ready to log in, just open an SSH connection to your Pi’s IP address. On a Mac
or Linux machine, the syntax is as follows:

ssh -1 pi 192.168.2.60

(Using whatever your Pi's IP address is, and assuming you haven't changed the default
username from pi.) Then just enter the password when prompted, and you'll be working
on the Piviathe command line, as if you had a terminal open in a standard desktop session.
On a Windows machine, just open PuTTY, leave everything as the default, put the Pi’s IP
into the Host Name (or IP Address) field, and click Open.

If you would like to see a desktop interface but still want to work remotely, you can con-
figure the Pi as a Virtual Network Computing (VNC) server. Once the server is installed, you
can start it on the Pi, start up a VNC client on your desktop machine, and again work
remotely, only with a full desktop. The easiest package to get running (in my opinion) is
TightVNC. Open a terminal on the Pi and install it with the following:

sudo apt-get install tightvncserver
Once it's installed, you can start the server with a command line:
vncserver :1 -geometry 1024x768 -depth 16

Now all you need to do is install a VNC client on your desktop machine (I use Chicken of
the VNC on my Mac) and connect to the Pi's VNC server.

Setting Up an Ad Hoc Network

The last thing I'd like to go over in this chapter is setting up your Pi to form an ad hoc
network. Although being wirelessly connected to a network is great if you're at home or
school or the office, you won't be able to connect to your rover if there’s no local network.
And because rovers do best, well...roving, you'll probably want to take it outside.

The solution here is to set your Pi to become a server of an ad hoc network. With its own
DHCP service, it can hand out DHCP leases to your laptop or your phone, allowing you to
ssh directly into it, even outdoors. (An ad hoc network is simply a small, computer-to-

Make a Raspberry Pi-Controlled Robot

Setting Up an Ad Hoc Network

computer network. If you were to connect your Pi directly to your laptop with an Ethernet cable,
you would have a small, wired, ad hoc network.)

You'll need to edit your interfaces file again with this command:
sudo nano /etc/network/interfaces

You may want to save the current file as interfaces-old or something similar before you start
poking around. | sometimes switch back and forth between interfaces files, depending on my
plans for the Pi that day. Sometimes it’s just easier that way.

When it's saved, edit the wireless portion of the file so it looks like the following:

auto wlan0@

iface wlan@ inet static
address 192.168.1.1
netmask 255.255.255.0
wireless-channel 1
wireless-essid RPilWireless
wireless-mode ad-hoc

Save it and exit. Then restart your wireless connection with the following:

sudo ifdown wlan@
sudo ifup wlan@

Now you should be able to see a network called RPiWireless from any other computer with a
wireless connection.

Don't try to connect to it yet, however. Your Raspberry Pi has created an ad hoc network, and
is broadcasting it, but that’s all your Pi is doing. Any other computers trying to connect to that
network will never be assigned an IP address, and thus will never be able to connect to it and
communicate with the Pi. We need to set up the Pi to assign IP addresses to connecting com-
puters, and we'll do that with a DHCP package called, appropriately, isc-dhcp-server. First,
update your Pi and then grab the package:

sudo apt-get update
sudo apt-get install isc-dhcp-server

When it's finished installing, you need to configure it using its configuration file. Open it with
this command:

sudo nano /etc/dhcp/dhcpd.conf

There’s a lot of preconfigured information in that file. In general, you'll want the only uncom-
mented lines to be like this:

ddns-update-style interim;

default-lease-time 600;

max-lease-time 7200;

authoritative;

log-facility local7;

subnet 192.168.1.0 netmask 255.255.255.0 {
range 192.168.1.5 192.168.1.100;

}

Chapter 4

37

Setting Up an Ad Hoc Network

38

Now restart your Pi and look for the wireless network again with your other computer. Not
only should the network show up, but you should be able to connect to it. Once you're
connected to the Pi’s ad hoc network, you can ssh into your Pi by typing ssh -1 pi
192.168.1.1. This is the command you'll use to connect to your rover after you take it
outside, away from any WiFi networks. Moreover, with the DHCP server running, you won't
have to set up your laptop with a static IP address; the Pi will assign you one every time
you connect to the network. You can assign your laptop a static IP if you wish, but it's
unnecessary, particularly because that IP address will be valid only during the times you're
logged into the Pi’s ad hoc network. Otherwise, you'll have to reconfigure your laptop’s IP
address every time you log on and off the Pi's network.

Now that we have the wireless working, let’s look at building the rover.

Make a Raspberry Pi-Controlled Robot

OK, enough introductions and tours and histories and whatnot; you're probably itching to get
to the building of the rover. With that in mind, let’s take a look at the parts used to build it. I've
included a section just for sensors; remember that you can add or take away from these as you
like. The more sensors you pack on board, however, the morelike arover your machine becomes.
I've also, where applicable or possible, added the links to where you can buy these parts online.

Remember: you don't have to use the parts | list here. For instance, I'm using the wheels from a
Power Wheels Escalade, but you may decide to use larger or smaller tires (especially if you make
your rover’s body quite a bit smaller than mine).

For that matter, you can change the design to make a smaller rover, which has its advantages:
a smaller rover needs less wood, so it will be lighter in weight, which probably means you can
use smaller motors, and so on. That being said, there’s not much as impressive as a big beefy
rover driving around, putting all of the RC cars in the neighborhood to shame. Plus, if you want
a lot of sensors on your rover, you're going to need more space to put them...

Body

The following is a list of materials you may end up using for the body of the rover:

Wood (1 x4), 6’
Used for the walls of the rover body. Use something lighter in weight like pine or even balsa.
Oak or mahogany are probably not good choices.

Plywood, 4’ x 4’
Used for the bottom of the rover. Again, lighter is better.

Plexiglass, 2’ x 4’
This is totally optional. | wanted to put a lid over the rover’s contents, but thought it would
be cool if you could still see the guts. It’s purely for aesthetics, as the thickness | used (1/16")

39

Body

is much too thin to offer any structural protection. If you live in a particularly warm or
sunny climate, you may find that the plexiglass gives a sort of greenhouse effect to
your rover, with the unwanted side effect of heating up your electronics; experiment
and use with caution, perhaps with a few holes cut for venting, along with the cuts
necessary to mount the robotic arm.

Aluminum channel, 2’
Used for the robotic camera arm (Figure 5-1). Also called C-channel, this is often used

to surround glass or plexiglass in building projects. Get something as light as you can,
yet beefy enough to hold the camera(s) and run the cables through.

Figure 5-1. Aluminum C-channel

Small hinges (2)
Used to attach the plexiglass lid to the main body.

Angle brackets (2)
Used to mount the motors to the body of the rover. This may take some creativity on

your part, as every rover motor and body will differ slightly. After much thought, |
ended up using the brackets shown in Figure 5-2, with some modifications that you'll
see in Chapter 7.

40 Make a Raspberry Pi-Controlled Robot

Wheels, Motors, and Power

Figure 5-2. Motor-mounting bracket

Wheels, Motors, and Power

The following is a list of materials you'll need to get your rover powered up and moving:

Motors (2)
| picked these up on Amazon for about $25. They are designed to move electric seats in a
car, and the long motor shafts make them ideal for attaching to a wheel (Figure 5-3) or an
axle shaft.

Chapter 5

41

Wheels, Motors, and Power

Figure 5-3. Seat motor

Power Wheels wheels (4)
| used wheels from a Power Wheels Cadillac Escalade model. They're oversized for the
rover, measuring 8 inches thick with a 14-inch diameter, but they do resemble the tires
on NASA’s rovers, so there’s that (Figure 5-4).

42 Make a Raspberry Pi-Controlled Robot

Wheels, Motors, and Power

W

Figure 5-4. Escalade wheels

Aluminum axle
From any hardware store. | used stock with 1/2" diameter, in order to fit the wheels
(Figure 5-5). You'll need only one of these, for the front wheels. The rear wheels are direct-
powered by the motors.

Chapter 5

43

Wheels, Motors, and Power

Figure 5-5. Aluminum axle

Bearings (2)
Again, from a hardware store, with a 1/2" inner diameter to fit around the axle and
small enough to fit inside the hub of the wheel.

High-torque servo
Used for the robotic camera arm. The high-torque version is necessary because the
arm is pretty heavy, even if it is made of aluminum (Figure 5-6).

Figure 5-6. High-torque servo

44 Make a Raspberry Pi-Controlled Robot

Wheels, Motors, and Power

12V battery
Purchased from a battery supply store. Get one that’s used for things like electric scooters
and wheelchairs. It should be large enough to power your motors for a decent amount of
time (Figure 5-7). If you have the means, get two batteries, as more power is never a bad
thing.

Figure 5-7. 12V 9Ah battery

Li-Poly RC battery
Used for powering the Pi. You don’t need an especially powerful or big one. | use 1.3
milliampere-hour (mAh) battery packs, which are incredibly small and light and last for well
over an hour on a single charge (Figure 5-8).

Don't forget to purchase a charger that's compatible with whatever battery you choose. Keep
the voltage under 12 volts, as the voltage regulator we'll be using (the Pi has no onboard reg-
ulator) can safely handle that much, but not less than 5 volts. 1.3 to 1.8 mAh should be plenty,
as the Pi draws about TA.

Chapter 5

45

Wheels, Motors, and Power

Figure 5-8. Li-Poly battery

alotof powerinto asmall package. Be extra careful when you connect them
to make sure you don't short out the leads. Li-Polys have been known to
burst (some say explode) or catch fire when shorted. That could put a big
dent in your rover-building plans.

'::\a" Thelithium polymer (Li-Poly) batteries used for remote-controlvehicles pack

USB car charger
These are nice because they have a built-in voltage regulator that can bring the in-
coming voltage down to the Pi’s required 5 volts (Figure 5-9). To this, add a short USB

cable (USB type A to USB micro).

46 Make a Raspberry Pi-Controlled Robot

Sensors

Figure 5-9. USB car charger

Female cigarette lighter socket
To this, add a few connectors for the type of Li-Poly battery that you use (XT60, for instance).
They should be available at the same place you bought your battery pack. I'll show you
how to connect everything to give yourself a quick-connect setup in Chapter 7.

Sensors

Some of these sensors are bought individually, such as the GPS unit and the SHT15 thermom-
eter. However, you can also order a 37-in-1 sensor pack from a company called Deal Extreme
for under $40. This great deal includes a temperature sensor, IR sensor, rotary encoder, Hall
effect sensor, and on and on. You can pick and choose which ones youd like to add to your
rover, and you're limited only by room and power requirements.

At the bare minimum, | suggest the following:

GPS unit
See Figure 5-10.

Chapter 5

47

Sensors

Figure 5-10. GPS unit

SHT15 temperature sensor
See Figure 5-11.

BMP180 barometric pressure sensor
See Figure 5-11.

HMC5883L magnetic field sensor
See Figure 5-11. This sensor, similar to a compass, can tell you how it is oriented with
respect to the Earth’s magnetic field. It's especially nice because it can be programmed
to read in three dimensions, rather than just two.

48 Make a Raspberry Pi-Controlled Robot

Sensors

Figure 5-11. Thermometer, barometer, and magnetometer

Accelerometer
This sensor is similar to what you find in your smartphone. It detects acceleration in any
direction, including that due to gravity, which means it can detect which way is “down” and
let you know if your rover is on a slope, or flat ground, or upside-down.

Webcam

This may require some experimentation on your part before adding it to the rover, as so
many brands and models of webcam are out there, and some work better than others on
the Pi. At home, when my Pi is plugged into main power, | use a Logitech C510 webcam
because it has pretty good image quality. In the field, when I'm running the Pi on batteries,
| have a battered old webcam of unknown origin. (Honestly—I've had it forever, and the
make and manufacturer are worn off the casing. It barely draws any power, however, so |
keep using it.)

Photoresistor
This is a resistor that changes its amount of resistance based on the amount of ambient
light. As the amount of light increases, the resistance decreases. It's a handy way of making
a device light-activated, for instance, or determining whether your rover is in the shade.
They're available from any electronics store, including RadioShack, if you happen to have
one nearby.

Ultrasonic rangefinder
This handy little device, shown in Figure 5-12, uses ultra-high frequency sound waves to
determine the distance to an object in front of it. It is useful for determining whether your
rover is about to run into a wall.

Chapter5 49

Miscellany

50

Figure 5-12. Ultrasonic rangefinder

Magnetic field sensor (Hall effect sensor)
This device senses changes in the surrounding magnetic field, and is often used to
detect movement between pieces of metal or on a sliding or rotating sensor platform.

Infrared motion sensor
This sensor detects motion by sensing changes in the surrounding IR field.

Miscellany

The following lists other miscellaneous parts you may need during construction:

Breadboard
If you've done any electronics work, you probably have at least one of these floating
around your workshop (Figure 5-13). They're great for connecting parts without sol-
dering, allowing you to move and redesign your circuit as many times as you like. They
also make it easy to have a common power and common ground line, and if you have
several sensors that use the 12C protocol (Chapter 10), it'’s a handy way of connecting
them all to the 12C bus.

Jumper wires
Used to connect parts on your breadboard. | recommend checking eBay for a pack of
wires with male-male, male-female, and female-female ends.

MCP3008 analog-to-digital chip
This chip is used to convert the analog signals received from some sensors, like the
photoresistor, to digital signals that the Pi can understand.

Edimax EW-7811UN wireless adapter
Or a similar one with a compatible chipset—see Chapter 6.

Make a Raspberry Pi-Controlled Robot

Tools

Figure 5-13. Breadboard

Dual H-Bridge L298H motor controller

This handy motor-controller board, shown in Figure 5-14, can control two motors using a
power source completely separate from the Pi. In other words, you can power your Pi with
a small 1.3mAh battery pack, and simultaneously power your motors with a beefy 12V 9Ah
battery, all without worrying about burning out your Pi by channeling too much current
through it. It's based on the common L298 chip, and I'll go over how to use it in Chapter 8.

Common workbench supplies

Glue, paint, screws, etc.

Tools

In addition to all of these items, you'll need some standard tools:

Dremel multitool

Soldering iron (I use a Weller, but all | recommend is that you get a high-quality iron that
allows you to adjust the temperature of the tip. Your projects will thank you.)

Hacksaw
Cordless drill
Pliers

Wire cutters

Screwdrivers

Chapter 5

51

Tools

]

1 =k k

AL

A .--'--'--1' I:{_- !-':nil' -r b
._* —"—::-: I

&
&
wt
-
3
r
b
¥
;

Figure 5-14. L 298H dual motor controller

A good workspace, where you can spread out and lose things/get organized, is invaluable.
If you can't get a large work area to call your own, an understanding spouse/roommate
who will let you use a common space is the next best thing. Just remember to clean up

afterward.

52 Make a Raspberry Pi-Controlled Robot

The current design of the rover has only one servo: a high-torque model used for raising and
lowering the robotic arm (Figure 6-1).

Figure 6-1. High-torque servo

However, you may decide to add more servos as the build progresses. You could change the
design of the arm to give it two or three degrees of freedom (DOF), or you might add other

53

Servos

54

attachments such as a gripper claw, a sample return arm, or a laser turret. Whether you
keep the rover simple, with just a robotic arm, or you add to its capabilities, you'll need to
be able to control those servos smoothly and effortlessly.

Servos

At its core, a servo (or servomotor) is really nothing more than a DC motor, over which you
have a certain amount of fine-grained control. How much control depends on the type
and make of servo and the software or hardware you're using to control its movement.
Probably the most common place to find servos is in radio-controlled vehicles, but they're
also used in animatronics, robotics, and other types of automation. They are often me-
chanically linked to a small potentiometer, which sends positional feedback to the con-
trolling software or hardware. In this way, the controller is always aware of the servo’s
position, and can send or modify commands based on that position.

There are two types of servos: standard and continuous. The core of the servo remains the
same; the only difference is what you can do with it. A standard servo can rotate between
0 and 180 degrees (a half turn) or only between 0 and 270 degrees (a three-quarters turn).
When you send a servo a command to rotate to a specific position, that command is trans-
lated into a specific number of degrees for the servo to rotate. Depending on the servo,
this can be as accurate as 1/3 of a degree. There are even some high-precision, high-quality
servos that offer a turning resolution of 0.07 degree, though something that precise can
cost upward of $500. Most hobbyist servos have a precision of a few degrees, which is
plenty for most purposes.

A continuous servo, on the other hand, is more like a regular DC motor than a standard
servo. A continuous servo can rotate 360 degrees; when you send it commands, those
commands are translated to a rotational speed rather than a position. This means that you
can't tella continuous servo to rotate 720 degrees (two complete rotations) and then stop.
Rather, sending a value to it will make it turn continuously, either clockwise or counter-
clockwise, at a certain speed, depending on the value sent. Sending the value 75 to a
standard servo may make it turn 90 degrees and then stop, for example. Sending the value
75 to a continuous servo, on the other hand, may make it start turning slowly counter-
clockwise. It will continue to turn at that speed until you either power it off or send it a
stop value (often 0, but it may vary depending on the servo). Because of this behavior,
continuous servos are often useful as drive motors.

PWM Control

You don't need a special library to control the servos. As it turns out, the RPi.GPIO library
we use to interact with the Pi's GPIO pins is capable of the type of output necessary to
control servos: pulse-width modulation, or PWM.

Make a Raspberry Pi-Controlled Robot

PWM Control

The RPi.GPIO library is included in all recent Raspbian distributions, though not
in the early versions. To see whether you have it, fire up a Python prompt on your
Pi with the command:

python
Then type the following command:
import RP1.GPIO

If you get an ImportError, you can easily install the module by exiting your
Python prompt with Ctrl-Dand then type the following:

sudo apt-get install RPi.GPIO

Ifit still doesn’t work, you might have to completely delete your current RPi.GPIO
and install a new one afresh:

sudo apt-get remove RPi.GPIO
sudo apt-get install RPi.GPIO

PWM is simply the process of sending precisely timed bursts of power to a receiver, such as an
LED oraservo.To be understood and acted upon by the servo, the pulses must be at a particular
frequency—most often 50Hz, or one pulse every 20m:s. It is the width—or length—of the pulse
that determines what the servo will do. An ON pulse that lasts 0.5ms, sent every 20ms, will send
the servo all the way to the left, or counterclockwise. A pulse of 2.5ms, on the other hand, will
send itall the way to the right, or clockwise. Different pulse widths between those two extremes
will send the servo to any position you choose.

So how do you send these millisecond pulses to the Pi accurately? Like all processes running
on the Piatany given time, Python is constantly being interrupted (even if only for a millisecond
or two) by system-level processes. This makes precise timing of a pulse impractical, if not im-
possible. Luckily, the RPi.GPIO library has what we need: the ability to set a particular pin as a
PWM pin and give it a duty cycle necessary to power a servo.

WhenIsay “duty cycle,” I'm referring to the length oftime the signal is HIGH during
each 20ms span of time. It's probably best illustrated by the graph in Figure 6-2.
A 0.5ms pulse can be translated to a duty cycle of 2.5%, a 1.5ms pulse translates
to a duty cycle of 7.5%, and so on. The 20ms pulse is a given using the PWM pin,
so the duty cycle easily translates to a pulse width.

Chapter 6

55

PWM Control

56

0.5 f——1—1—— L | p.5720

ms | | ' ; | i ' | =g.5%
8 ' 5 10 @ 15 = 20

1.5 4 | { | i ! { | 1.5/ 20

“5 - a I | - - It '] =? lsx
B 5 w0 33 @2p

a1+ 1 1 1 1| la.ssa0

ms 1 i | =)2.5%
i 1 : i I g B I .'!.:L I :I:.ﬂ

Figure 6-2. Duty cycles

To use PWM with the RPi.GPIO library, you need to connect the servo’s signal wire (usually
the white or yellow one) to one of the Pi’s GPIO pins, and then use the GPI0.PWM() function.
For example:

import RPi1.GPIO as GPIO
import time

GPIO.setmode (GPIO.BOARD)

This sets up GPIO pin 11 as our output pin
GPIO.setup (11, GPIO.OUT)

This sets pin 11's frequency to 50Hz
p = GPIO.PWM (11, 50)

This sets the duty cycle to 7.5 (centered)
p.start (7.5)

To sweep back and forth, we change duty cycles
while True:

p.ChangeDutyCycle (7.5)

time.sleep (1)

p.ChangeDutyCycle (7.5)

time.sleep (1)

p.ChangeDutyCycle (2.5)

time.sleep (1)

Don't forget to power your servo with a separate battery (like a 9V for testing purposes)
and to tie the external power supply’s ground to your Pi’s ground (pin 6).

Running this script should make the servo sweep left and right, pausing for a second
between each direction change. However, if you run it with a servo attached, you'll notice

Make a

Raspberry Pi-Controlled Robot

ServoBlaster

that the servo movement is extremely jerky and noncontinuous. It's because, despite our best
efforts, PWM output on the Pi is not as easy to manage as it is on a simple microprocessor such
as the Arduino. While functional, it's not pretty. There’s got to be a better way to do it.

ServoBlaster

Enter ServoBlaster, a very helpful library written by Richard Hirst. It runs unnoticed in the back-
ground as a daemon, and allows you to smoothly control a servo either within a Python script
or even directly from the command line. It’s also easy to download and install; you don’t even
need to use Git (the download/version control tool) to get it.

To install, first navigate into the directory where you're going to be putting all of your rover’s
Python code. Then, in the terminal, type this:

wget https://raw.githubusercontent.com/richardghirst/PiBits/master/ServoBlaster/user/servod.c
followed by:

wget https://raw.githubusercontent.com/richardghirst/PiBits/master/ServoBlaster/user/Makefile
You now have the two files you need. To install ServoBlaster, simply type the following:

make servod
To start it (as | said, it runs in the background), type:

sudo ./servod

You should see a screen full of code detailing the program’s settings, including a servo mapping
(Figure 6-3).

This mapping can be a little confusing, so it bears some explanation. First of all, you've probably
noticed that the Pi’s GPIO numbers don't correspond at all to its physical pin numbers (physical
pin 4 is GPIO pin 2, for instance). When you use the RPi.GPIO library, therefore, you must specify
whether you'll be referring to pins in your program by their physical pin numbers (with
GPIO.setmode(GPIO.BOARD)) or by their GPIO numbers (with GPI0.setmode(GPI0.BCM)). The
ServoBlaster library, unfortunately, adds another layer of complexity to this pin-mapping mess.
The introductory splash screen tries to illustrate it, but with limited success. Referring back to
Figure 6-3,you'll see that the eight servo pins that ServoBlaster uses are mapped to eight specific
physical pins on the Pi: 7, 11,12, 13, 15, 16, 18, and 22. Those physical pins, in turn, correspond
toGPIOpins4,17,18,27,22,23,24,and 25, respectively. ServoBlaster refers to those pins (servos)
asservos 0, 1,2,3,4,5,6,and 7, respectively. So if you want to control servo 0, you'll connect
the servo's signal wire to the Pi’s pin 7, also known as GPIO pin 4. If you want to control servo 5,
you'll connect the servo to the Pi’s pin 16, also called GPIO pin 23. And so on. Clear as mud?
Don't worry, it will make more sense as you get familiar with the library. In the interest of keeping
things simple, | use GPI0.BOARD mappings in this book, which has the added benefit of ensuring
that the code here will run on whatever version of the Pi you happen to be using. If you're not
using GPI0.BCM mappings, you can safely ignore the GPIO pin numbers | refer to.

Chapter 6

57

ServoBlaster

58

PASE ik | Ly i igid

Figure 6-3. ServoBlaster intro screen

To test the library after you've installed it, connect a servo to your Pi’s GPIO pin 18 (pin 12).
Keep it powered with your 9V battery, and in your terminal, type:

echo 2=150 > /dev/servoblaster

Your servo should immediately do something interesting. The command follows
the syntax echo (servo=value) > /dev/servoblaster. You're basically writing (echo) a
value (servo=value) into the /dev/servoblaster file. The library maps a servo number to a
pin; if you want to refer to servo 0 in your code, it'll be the one plugged into pin 7 (GPIO
pin 4) on the Pi. In order to use this syntax in our Python code, we'll simply use the sub-
process library:

import subprocess
subprocess.call("echo 2=150 > /dev/servoblaster", shell=True)

You'll want to play around a bit with values you send to the servo, perhaps by writing a
simple interactive Python script—an exercise | leave to you. Different servos respond dif-
ferently; I've noticed discrepancies even between two servos of the same model and man-
ufacture. Be aware, also, that only certain GPIO pins will work with the library. That is, the
ServoBlaster library can control up to eight servos at a time, but only on the eight particular
pins I mentioned previously. You'll need to investigate what values to send to the servo to
make it move the way you need it to: depending on how you install your roboticarm, you'll
need to know how far up to lift it and what value it takes to get it there.

Many thanks to Richard Hirst for his code library, written and freely given to the Pi com-
munity for projects like ours. If you need more information regarding the library and how
to use it, check out his README file.

Make a Raspberry Pi-Controlled Robot

Now that we've gone over the history of Linux, and what the Pi is and what it can do, and how
to set up the wireless, and (of course) the parts required, it's time to get down to some robot
building. Remember, Rome was not built in a day, and neither will your rover. Take your time
with the build, and plan out what you do before you do it. You know the saying: measure twice,
cut once.

This is especially applicable if you are using the rover in this book as a suggestion, and not a
step-by-step instruction list. With each modification you make (and you are encouraged to
make them), you'll be faced with design decisions not mentioned here. | hope to prevent you
from making some avoidable mistakes, but obviously | can’t anticipate every possible design.

The Body

The most obvious place to start the build is with the body. Starting with the 4’ x 4’ piece of
plywood, cut a piece large enough to become the base of the rover. Sketch it out or plan it on
paper before you decide on size; it's going to have to fit two motors, at least two batteries (one
for the Pi and at least one for the motors), a motor controller, at least one breadboard, the Pi
itself, and several sensors. | made mine vaguely coffin-shaped, about 28" x 15" (Figure 7-1).

The shape is immaterial; if you want to go with a rectangular base to keep it simple, that’s a
great idea too. | was just feeling particularly motivated when | laid out the coffin design.

After you've designed and cut the base shape from the plywood, you'll next need to measure
and cut the 1 x 4s to go around the edges. These are going to serve as the sides of the body.
After you've cut them to fit, attach them to the base with screws or wood glue (Figure 7-2).

If you're going to attempt to make the body smooth (for aesthetics), it might behoove you to
experiment with dovetails and 45-degree corner cuts to make the sides fit the base as snugly
as possible. On the other hand, if you're not a carpenter, or are going for the “backwoods home-

59

The Body

60

brewed robot” look, don't worry too much about how the sides fit. For that matter, you
could conceivably build most of the rover on a flat base with no sides—just some upright
portions through which to slide the axles.

&

i
F L]

P bl

Figure 7-1. Body shape of the rover

Figure 7-2. Attaching the sides

When the sides are firmly attached, sand them as smooth as you can. If you have a lot of
gaps and cracks, and if you're going for the smooth look, get some fiberglass paste (sold
at auto parts stores for filling dents in auto bodies), and apply it to the cracks (Figure 7-3).
Follow the instructions on the package to apply it, and after it sets and dries, sand it as
smooth as you can. | normally do this sanding by hand, rather than with an electric sander,
because it's much too easy to press too hard with an electric sander and remove more

Make a Raspberry Pi-Controlled Robot

The Body

material than you planned. If you get a sanding block, not only will your surfaces be flat, but
the block will help save your hands from fatigue. Start with a pretty rough grade to shave down
the lumps, and then use finer and finer grade to get the surface smooth.

Figure 7-3. Applying filler to the gaps

Once it’s as smooth as you can get it, quickly go over it with a damp sponge or cloth to wipe
up the dust, as the dust will prevent paint from sticking properly to the surface. Finish up by
painting the body with a primer and a final coat of paint. Feel free to decorate as you see fit
(Figure 7-4).

Chapter 7

61

The Body

62

Figure 7-4. Finished body

The next step in the construction of the body is drilling holes to hold your wheel axles.
With the body and motor design | outline here, you'll want to keep the holes for the front
axle as close to the actual size of the axle as possible to make it a tight fit. The rear axle
holes, meanwhile, should be a bit larger to allow the axles to move as the rover moves
(Figure 7-5)—sort of like shock absorbers. The rear axles will end up being made out of
short pieces of flexible PVC pipe, so giving them some room to bend will allow the wheels
to have more “give” when traveling over uneven ground. The axles will be rubbing against
the wood, but the rover won't be going fast enough for the friction generated to affect its
travel. If you prefer, however, you can find bearings that fit the axles and use them in the
rear holes as well as on the front axle.

Make a Raspberry Pi-Controlled Robot

The Body

Figure 7-5. Hole for rear axle

Finally, if you plan to use a plexiglass cover for your rover, now is a good time to attach it. Using
a plexiglass cutter (Figure 7-6) and a straight edge, cut it to fit the shape of the rover’s body.
You'll need to cut a bit out later to accommodate the robotic arm, but make sure it fits the body
shape.

Chapter 7

63

The Motors

64

Figure 7-6. Plexiglass cutter

Don'tattach the plexiglass to the body yet; it's much easier to cut while it’s still unattached.

The Motors

The motors can now be prepared and then mounted to yourrobot’s body by using brackets.
The bracket must be thin enough to be attached with the motor’s original screws, yet
strong enough to hold the motor’s weight. Spend some time shopping at the hardware
store until you find a suitable bracket; | found these in the lumber section, as they’re used
to connect 2 x 4s when framing a house.

First, unscrew the faceplate from the motorand trace the hole positions onto the mounting
bracket (Figure 7-7).

Make a Raspberry Pi-Controlled Robot

The Motors

Figure 7-7. Tracing the faceplate

Now drill out the holes you traced onto the bracket. Make sure they're large enough to slip the
faceplate screws through, and then remount the faceplate to the motor with the bracket at-
tached. When you're finished, the faceplate screws should be not only holding the motor to-
gether, butalso keeping the bracket tightly attached to the motor. This part of the project should
end up looking something like Figure 7-8.

Chapter 7

65

The Motors

66

Figure 7-8. Motors attached to mounting brackets

Theidea here is to securely fasten the motors to your rover’s body, and the exact technique
you use will depend on the motors and brackets you're using. If you're able to replace the
faceplate screws with longer ones, you may be able to simply mount the motors to the
side of the rover itself, eliminating the need for brackets. However, the motors | used have
unique, tapered screws that can't be simply replaced with longer ones, so | had to find a
thin, sturdy bracket option.

Finally, attach the brackets (with motor attached) to the rover base, so that the motor shafts
extend through the holes in the side (Figure 7-9). Don't worry if they don't extend very far;
we'll extend them a bit when we attach the wheels.

Make a Raspberry Pi-Controlled Robot

The Wheels

o : '
E

Figure 7-9. Mounted motors

The Wheels

Again, depending on the drive design you choose, this portion of the build may differ signifi-
cantly from mine. However, if you're also going for the direct-drive approach, you should go for
something similar to this. Each of the two rear wheels is attached to a motor, which is controlled

Chapter 7

67

The Wheels

68

via software running on the Pi. Meanwhile, the two front wheels are attached to the front
axle with bearings, meaning each wheel turns independently of the axle. This means that
in order to turn the rover, you need to turn only one rear wheel or the other (or both in
opposing directions), and the front wheel on each side will follow suit. It also means that
the front axle must not turn with the wheels, or the rover will simply move forward, rather
than turning. Keep the front axle snug in its hole, don't be afraid to affix it permanently
with glue or epoxy, and make sure the front wheels turn without problems.

Another possible wheel design (which | experimented with in theory as well) is a chain or
belt drive. In this configuration, you need only one drive motor, which is then attached to
the axle. A chain drive requires a sprocket or gear attached to the axle, while a belt drive
will require some method of keeping the belt centered on the axle without slipping.

In my opinion, there are two disadvantages to the chain- or belt-drive model. First, keeping
the belt or chain attached to the rear axle is a challenge; a sprocket for a chain would need
to be solidly attached to the axle, and a belt would tend to slip on the axle unless you could
devise a way of keeping it from doing so.

The second disadvantage is that if the rear wheels turn together, as they do in this con-
figuration, then you must be able to steer the front wheels, either by twisting the entire
axle or by turning the wheels themselves, the way the wheels turn on a full-sized auto-
mobile. Both of these present significant design challenges that you may or may not want
to attack.

| prefer the direct-drive design, for the main reason that it lends itself well to being con-
verted to a track design, like a tank. Connecting a track between the front and rear wheel
on each side would make the rover even easier to steer and perhaps make it more of an
all-terrain vehicle.

The Rear Wheels

Each rear wheel is solidly attached to a length of small plastic pipe, with a diameter just
large enough to slip over the motor’s shaft. To accomplish that, a strong epoxy, designed
to attach plastic to plastic and plastic to metal, comes in handy. First, if necessary, use a
round file to enlarge the hole in the middle of the wheel just enough to accommodate the
pipe (Figure 7-10).

Make a Raspberry Pi-Controlled Robot

The Wheels

Figure 7-10. Hole for axle shaft

Before you epoxy the axle, you'll want to create a sort of hubcap to help solidly attach the wheel.
To do this, use a large fender washer with a notch cut to fit the wheel hub (Figure 7-11). The
inner hole of the washer does not need to fit the plastic pipe, as you'll be gluing it to the end
of that pipe.

Figure 7-11. Original and modified hubcap

To connect the wheel, slide the pipe through the hole in the middle and use epoxy to attach it
(Figure 7-12).

Chapter 7

69

The Wheels

Figure 7-12. Axle pipe attached to wheel

When the epoxy has set according to the instructions, flip the wheel over and glue the
hubcap to both the wheel hub and the end of the axle (Figure 7-13). The notch not only
gives more surface area for attachment, but also ensures that the wheel will turn when the
axle shaft does.

70 Make a Raspberry Pi-Controlled Robot

The Wheels

Figure 7-13. Attached hubcap

The last step in the process of building the drive mechanism is to attach the axle to the motor
shaft. There are two ways of doing this: chemically, with epoxy, or mechanically, with a cotter
pin. | chose to use epoxy; if you'd rather use a cotter pin, make sure you have a sharp drill bit,
as the motor shaft is likely to be hardened steel. Slip the pipe over the motor shaft and drill a
hole through both. Then slide a cotter pin through the hole and bend the ends back. This
method has the advantage that you can remove the axle shafts at any time.

If, on the other hand, you prefer to go the more permanent route, break out your trusty tube
of epoxy again. Mix up a large batch and slather it generously over the motor shaft. When it’s
fully coated, slide the pipe over the shaft and let the glue set according to the instructions.
When you finish, you should have something like you see in Figure 7-14.

Chapter 7

71

The Wheels

72

Figure 7-14. Attached rear axle

However you go about it, the end result should be an axle/wheel combination that turns
when the motor shaft turns.

The Front Wheels

Luckily, the front wheel assembly is much easier, though again it uses epoxy. In order for
the steering design to work, each front wheel must be able to turn without affecting the
other front wheel. To accomplish this, they must be attached to the front axle with a bear-
ing, and the axle itself must be firmly attached to the body of the rover. If you like, a viable
alternative would be to use casters for the front wheels, as they don’t require an axle and
can turn independently of each other. If you decide to go with that approach, make sure
you can mount them solidly to your rover’s body and make sure that any off-road driving
you intend to do won't gum up the bearings in the casters. | prefer to stay with four match-
ing wheels, which requires freely rotating wheels on an immobile front axle.

Make a Raspberry Pi—Controlled Robot

The Wheels

Once again, mix up a batch of epoxy and, working quickly, slather it over the inside of the front
wheel where the axle would sit. Before the glue sets, affix the metal bearing to the wheel; the
end result should be a bearing that is firmly attached to the wheel and can be slipped onto the
front axle. It is also possible to simply make sure the wheel turns on the axle freely and keep it
in place with a few strategically placed cotter pins, but the disadvantage is that the wheel may
wobble quite a bit, contributing to the rover’s instability. Attaching the wheel to a bearing,
which is then attached to the axle, ensures the wheels will roll smoothly and without wobbling.

When the epoxy holding the bearing to the wheel is firmly set, slide the axle through the holes
you drilled for it in the body of the rover, and then slide the bearing over the axle and attach it
firmly (Figure 7-15).

Figure 7-15. Bearing and axle attachment

| used cold-weld for this; it's similar to epoxy, but specifically made for bonding metal to metal
(aluminum to steel, in our case—the axle to the bearing). The final product should look some-
thing like Figure 7-16.

Chapter7 73

The Robotic Arm

74

Remember to slide the axle through the rover body before you attach the
bearings; otherwise, you'll have an axle that can’t be attached to the body!

Figure 7-16. Front wheel and axle

The Robotic Arm

Perhaps the neatest thing about this rover is the robotic arm. You can mount a webcam
or the Raspberry Pi camera board to the end of the arm, and either take still pictures with
it, or perhaps even navigate using a live stream. The high-torque servo allows you to raise
and lower the camera, giving you the ability to get a good look around your surroundings.

Make a Raspberry Pi—Controlled Robot

The Robotic Arm

Start by determining where you're going to mount the arm on your rover’s body. For stability’s
sake, you'll probably want to mount it toward the center or rear of the rover, on the midline.
Then decide how long you want the arm, and cut the aluminum channel to that length. Re-
member that the longer the arm, the more torque will be required to raise it, as the servo will
be mounted at the hinge point on the rover’s body. The camera on the end will also contribute
to the weight, as will the enclosure you design to hold it.

The high-torque servo will now need to be attached to a mounting bracket of some sort. | used
a bracket similar to those | used to mount the rear motors. Cut a hole in the bracket that fits the
servo snugly, and then slide the servo through and attach it to the bracket using the built-in
mounting holes (Figures 7-17 and 7-18).

Figure 7-17. Servo-shaped hole

When the servo is firmly attached to the bracket, attach the length of aluminum channel to the
servo’s horn by using some sheet-metal screws (Figure 7-19).

Chapter7 75

The Robotic Arm

Figure 7-18. Servo attached to bracket

Figure 7-19. Arm attached to servo horn

76 Make a Raspberry Pi-Controlled Robot

The Robotic Arm

The whole assembly can then be mounted to the body of the rover (Figure 7-20).

Figure 7-20. Mounted servo and arm

After your servo is attached, you can concentrate on the other end of the arm, where the cam-
era(s) are attached. You'll probably want some sort of enclosure, or at the very least a holder.
To keep the weight down, | made the camera holder out of a block of craft Styrofoam. If you
want to ensure that the camera is looking forward whether the arm s standing straight or laying
forward on the body of the rover, attach the block of Styrofoam to the end of the arm, using a
long threaded rod as a pivot. Carve out a section of foam for the end of the arm, and then mount
the camera on the foam by using a bit of hot glue (Figure 7-21).

Chapter 7

77

The Robotic Arm

78

Figure 7-21. Camera attachment to arm

It doesn’t take much glue to attach the Pi camera, because it weighs so little, and the glue
won't damage the camera as long as you don't use too much. To ensure that the camera
remains level, you may need to add some weight to the bottom of the enclosure. Lead
fishing weights or even a few large screws work well for this.

When you're satisfied with the attachment and pivot, run your camera’s cable down the
inside of the aluminum channel (Figure 7-22), using some tape to hold it in place.

Make a Raspberry Pi-Controlled Robot

The Robotic Arm

Figure 7-22. Camera cable

Finally, to hide the guts of the arm and its enclosed wiring, use a length of flexible plumbing
hose, cut lengthwise to slide over the arm, with appropriately placed slits to accommodate the
cable connectors where necessary (Figure 7-23).

Chapter7 79

Pi Power

80

Figure 7-23. Robotic arm cover

Pi Power

In order to supply your Pi with its required 5V with a Li-Poly battery pack, you'll need to
create some sort of connection between the battery pack and the mini USB cable used to
plug into the Pi. You'll also need to incorporate a voltage regulator of some kind to bring
the battery voltage down to a Pi-friendly level. In my experience, the easiest way to ac-
complish all of these things in a small package is to use one of the USB chargers that plug
into a car’s 12V socket (Figure 7-24).

Make a Raspberry Pi—-Controlled Robot

Pi Power

Figure 7-24. USB charger

The charger can be connected to the Pi with a short USB-to-USB mini cable. | use an extendable
one.Toattach the chargerto your batteries, getan extension socket for the charger (Figure 7-25).

Figure 7-25. Extension socket

Chapter7 81

Placing Everything

82

Cut off the end of the extension cord, and solder an XT60 female connector (or whatever
type of connector matches your Li-Poly pack) to the end (Figure 7-26).

Figure 7-26. Soldered connector

When you're finished, you should have two self-contained power plugs that fit nicely to-
gether (Figure 7-27).

This allows you to plug and unplug battery packs as you need/go through them, and the
voltage regulator keeps your Pi safe. All in all, it's a portable power solution that I've used
in many projects.

Placing Everything

The last part of the construction of the rover is placing all of the parts inside, including the
Pi, the L298H motor-controller board, the various sensors, and the batteries and bread-
boards used to power and connect everything. Obviously, this will depend heavily on your
rover’s design, plus where you decided to place everything. Try to keep the wiring neat
and tidy, and color-code wires where possible—use red wires for positive signals, black for
negative, white for signal wires, and so on. Zip ties can be handy when it comes to bundling
wires and cables. Your rover should end up looking something like Figure 7-28.

Make a Raspberry Pi-Controlled Robot

Placing Everything

W

Figure 7-27. Finished power cable

Finally, consider adding a switch between the power for the motors and the L298H board. By
using a simple toggle switch to disconnect the power when the rover isn't in use, you can
prevent your large drive batteries from gradually leaking into the L298H board, prolonging their
life. The Li-Poly packs used to power the Pi are easy to remove and recharge, but recharging the
batteries | chose for the drive motors is a bit more involved; | use a car battery charger, and the
less often | have to do it, the better.

Now that your rover is built, let’s look at adding some sensors to it.

Chapter 7

83

Placing Everything

Figure 7-28. Finished rover

84 Make a Raspberry Pi-Controlled Robot

At this point in the build, after we hook up the motors and connect the motor controller to the
Pi, we could remotely log into the rover and control it from a laptop. If you were to add a battery
for the Pi and at least one for the motors, the rover would be technically ready to test outside.
But don't do that yet. It might behoove us to connect everything first, debug the inevitable wire
crossings and incorrect hookups, and then take it outside.

Connecting the Motors and Motor Controller

Setting the sensor connections and the robotic arm aside for a moment, let’s go through the
process of hooking up the motors so we can test the movement. You'll need to set aside six
GPIO pins for the motor controller—three for each motor. | used pins 19, 21, 22, 23, 24, and 26,
simply because they're six GPIO pins that are located close to each other, physically. | connected
pins 19, 21, and 23 to the IN1, ENA, and IN2 inputs, respectively, and pins 22, 24, and 26 to the
IN3, ENB, and IN4 inputs. As a reminder, each motor uses three pins: two input pins (labeled IN1
and IN2) and one enable pin (labeled ENA and ENB). Sending HIGH signals to different combi-
nations of those three pins results in different motor behavior, asyou'll see in Table 8-1. Arguably
the mostimportant pin out of the three is the enable pin; if an enable pin is set LOW, that motor
doesn’t turn, regardless of what signals are sent to the two input pins.

After you've connected the input and enable pins, connect the Pi’s 5V output (pin 2) to the +5V
pin on the controller, and the GND pin to the Pi's GND pin (pin 6). Finally, connect the two leads
from the right motor to the board’s two MOT1 connections, and the two leads from the left
motor to the MOT2 connections (Figure 8-1).

85

Connecting the Motors and Motor Controller

Figure 8-1. Connections made to the motor controller

As I mentioned in the preceding chapter, | also installed a switch between my drive battery
and the L298H board, so | don't need to worry about phantom power drain, or some
random signal noise making the motors go nuts. When I'm ready to run the rover, | simply
flip the switch and get power to the board.

To control the motors using the L298H board, you enable a motor by setting that motor’s
EN pin high. Then you can either spin the motor one way by sending a HIGH signal to one
IN pin and a LOW signal to the other, or reverse the signals and make the motor turn the
other way. This might be better illustrated by Table 8-1.

Table 8-1. Motor settings

ENA Value | ENA=1 ENA=1 ENA=1 ENA=0
INT Value | INT=1 INT=0 INT=0 -
IN2 Value | IN2=0 IN2= IN2=0 -

Result Motor spins CW | Motor spins CCW | Motor stops | Motor stops

86 Make a Raspberry Pi-Controlled Robot

Connecting the Motors and Motor Controller

When you read “Motor stops,” you can read that as “Motor screeches to a halt”” In other words,
there is no coasting here; when a motor stops, it stops.

Because we're using the RPi.GPIO library, it's a simple matter for us to send pins HIGH or LOW
by using these commands:

GPIO.setup (PinNumber, GPIO.OUT)

GPIO.output (PinNumber, True)

GPIO.output (PinNumber, False)
If we do this based on input from us (the user), we can control the motors with an interactive
Python script.

Onceyou've connected the motors and power, it'sagood idea to get the rear tires off the ground
so you can test different commands without having your rover run away from you. Because the
rover is not moving, this setup also has the advantage that nothing has to be portable; you can
just plug in your Pi and use an AC adapter (if you have one of the right size) for your motors.
Only after you fix the bugs in your code (oh yes, there will be bugs) do you need to plug in
batteries and run around after the rover as it goes all sorts of places you never intended. For
now, think of it as having your rover up on the rack in the garage. Remember, you'll be hooking
the L298H board to your Pi’s pins as follows:

e INT - pin19
e ENA - pin 21
e IN2 - pin 23
e IN3 - pin 22
ENB — pin 24
e IN4 - pin 26

With the drive wheels elevated, start a new Python script called motortest.py:

import RP1.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)

#19 = IN1
#21 = ENA
#23 = IN2

GPIO.setup(19, GPIO.OUT)
GPIO.setup(21, GPIO.OUT)
GPIO.setup(23, GPIO.OUT)

#22 = IN3
#24 = ENB
#26 = IN4

GPIO.setup(22, GPIO.OUT)
GPIO.setup(24, GPIO.OUT)

Chapter 8

87

Connecting the Motors and Motor Controller

GPIO.setup(26, GPIO.OUT)

def rForward():
"R motor forward"
GPIO.output(21, 1)
GPIO.output(19, 0)
GPIO.output(23, 1)

def lForward():
"L motor forward"
GPIO.output(24, 1)
GPIO.output(22, 0)
GPIO.output(26, 1)

def rBackward():
"R motor backward"
GPIO.output(21, 1)
GPIO.output(19, 1)
GPIO.output(23, 0)

def LBackward():
"L motor backward"
GPIO.output(24, 1)
GPIO.output(22, 1)
GPIO.output(26, 0)

def allStop():
GPIO.output(21, 0)
GPIO.output(24, 0)

rForward()
1Forward()
time.sleep(2)
allStop()
time.sleep(0.5)
rBackward()
1Backward()
time.sleep(2)
allStop()

You can experiment with other sequences, of course, but running this simple script with
sudo python motortest.py

should result in your wheels going forward for 2 seconds, pausing, and then going back-
ward for 2 seconds. Play around with other values until you're familiar with how your motors
respond and how you have them hooked up. Again, keep this script, as you'll be using it
in your final code.

88 Make a Raspberry Pi-Controlled Robot

Controlling the Robotic Arm

Controlling the Robotic Arm

The other bit of code you'll need in order to control your rover is the code necessary to raise
and lower the robotic arm. You may remember it from Chapter 6, but let’s revisit it anyway by
writing an interactive script so you can see exactly what values have what effect on your arm.

To keep things simple, you should be in the same folder in which you installed the ServoBlaster
library. (You don't need to be, but it keeps everything simple and organized.) Make sure your
servod program is running with sudo ./servod, and connect your servo to pin 12 (GPIO 18) on
the Pi. If you get confused, refer back to Chapter 6, or reread the startup splash screen for the
servod command (Figure 6-3). Now start a new Python program:

nano servomap.py
Then try entering and running the following program:

from subprocess import call
import time

while True:
position = raw_input("Enter servo value: ")
call ("echo 2=" + position + " > /dev/servoblaster", shell=True)
time.sleep(2)

When you run this script, you'll have the ability to send different servo values to the arm to see
where it ends up. Ideally, you'll probably want the arm to be almost resting on the front of the
rover when it's not deployed, and you'll want it almost straight up when it’s active (Figures 8-2
and 8-3).

In fact, play with the arm configuration to find the value that allows the arm to rest on the body
of the robot when not in use. Putting the arm at this rest position will help save your batteries,
as otherwise the servo will continue to draw power to keep the arm in position. When you put
the arm into the rest position and then send a value of 0 to the servo with

echo 2=0 > /dev/servoblaster
it will power off the servo, saving on power.

My arm’s values ended up being 45 at rest, and about 100 when standing at attention. Obviously,
your values might differ significantly depending on your servo, your arm, and how it’s placed
in your rover.

Chapter 8

&9

Controlling the Robotic Arm

90

Figure 8-2. Robotic arm at rest

Now that you have your values, you need to write raise armand lower armfunctions to
add to your final code. One thing you've probably noticed is the almost violent way the
arm shoots from point A to point B. To keep things from breaking on the rover, and to
maintain the illusion of robotic grace (as well as not to poke anyone’s eye out), | wanted to
slow things down a bit. To do that, | wrote a script that iterates slowly through the inter-
vening values. To wit:

from subprocess import call
import time

def raise_arm():
for 1 in range (45, 100):
call ("echo 2=" + str(i) + " > /dev/servoblaster", shell=True)
time.sleep(0.5)

def lower_arm():
for 1 in reversed(range (45, 100)):

Make a Raspberry Pi-Controlled Robot

Controlling the Robotic Arm

call ("echo 2=" + str(i) + " > /dev/servoblaster", shell=True)
time.sleep(0.5)

The script is pretty self-explanatory, but basically the raise_arm() function sends the values
from 45 to 100 to the servo, one at a time, with a pause of half a second between movements.
The lower_arm() function does the same thing in reverse. When you run this, you'll see your
arm slowly raise and lower at a much more respectable pace—experiment with the
time.sleep() values as you see fit.

Although the rover is a complex piece of machinery (it is a robot, after all), these two snippets
of code are all the basics you need in order to control it: move forward, move backward, turn
left, turn right, raise arm, and lower arm.In the next chapter, we'll go over using the GPS
module to help you figure out where the rover is, and then in Chapter 10 we'll look at some of
the sensor possibilities and how to write code for them.

Figure 8-3. Robotic arm at attention

Chapter8 91

Once you've built a robot—particularly a mobile one, with wheels and perhaps a measure of
autonomy—an important part of controllingitis knowing whereit’s gotten to while you weren't
looking (see R2-D2’s escape in Star Wars Episode IV: A New Hope for a classic example). While |
don’t think you'll need to install a restraining bolt on your rover, knowing where it is and where
it's going, even to the extent of logging those locations to examine the route later in Google
Maps or Google Earth, is definitely an exciting possibility. We'll be using a GPS unit, shown in
Figure 9-1.

GPS stands for Global Positioning System, a satellite-based navigation system that can provide
the location and time (in UTC format) for any place on Earth where there is a direct line of sight
to four or more GPS satellites. It was developed in 1973 and started with 24 satellites; the system
has since been expanded to 32 satellites, all owned and operated by the U.S. government. If a
GPS receiver on the ground can lock onto a signal from these satellites, it can pinpoint a location
on Earth with an accuracy approaching 1 meter, and a timing accuracy of around 100 nano-
seconds (more than precise enough to determine whether your rover is safely across the street).
It's often used in robotic systems, including military drones and Google’s unmanned cars. GPS
was originally established for the U.S. military, but in 2000 President Clinton directed the Pen-
tagon to make the signals freely available and unencrypted. They now can be accessed by
relatively inexpensive devices, which, in our case, can then be connected to the Raspberry Pi.

A GPS unit might be a little more expensive compared to some of the other sensors on the rover,
but it's small, portable, and doesn’t draw much power. It’s also easy to set up and use. It can be
purchased with an optional 5m antenna, but my experience is that the antenna isn't necessary;
| can pick up enough satellites to get a GPS fix inside my house without it.

93

Preliminary Setup

Figure 9-1. GPS unit

Fun fact: the GPS system must take into account Einstein’s general theory of
relativity during normal operations. Because ground-based observers are
deeper within the Earth’s gravity well than the satellites are, the clocks on-
board the satellites appear to gain 38 microseconds per day. This discrep-
ancy means that the satellite would misrepresent your position by about 10
kilometers! Because such a drift would make GPS useless in only a few mi-
nutes, this gain is corrected for in the system’s design.

Preliminary Setup

In order for the Pi to communicate with the GPS receiver, you'll first need to install the
necessary Python library and its dependencies, and enable the correct interface on the Pi.
The library is called gpsd, and it is available in the standard Raspbian repository. First, to
install what you need, enter the following commands, one at a time, into your terminal,
and let the package manager do its thing:

sudo apt-get update
sudo apt-get upgrade

94 Make a Raspberry Pi-Controlled Robot

Preliminary Setup

sudo apt-get install gpsd

sudo apt-get install gpsd-clients

sudo apt-get install python-gps
(You may already have one or more of these installed, depending on your distribution version.)
The Python gpsd module is part of a much larger library of code designed to allow devices such
as the Pi and other microcontrollers to monitor and communicate with attached GPS and Au-
tomatic Identification System (AIS) receivers. It has been ported into C, C++, Java, and Python,
and allows you to “read” the National Marine Electronics Association (NMEA)-formatted data
transmitted by most GPS receivers. That means that if you decide to use a different GPS unit,
either now or later, as long as that unit transmits the NMEA-formatted sentences, the Pi should
still be able to understand the data. | have even had some success with a few off-the-shelf units
that connect to the Pivia USB; you simply need to point the gpsd daemon to the USB connection
(a bit further on in this chapter) rather than the UART one.

When you have the necessary packages and libraries installed, you'll need to configure the Pi’s
UART interface. UART stands for universal asynchronous receiver/transmitter. In simple terms, it
is a piece of computer hardware that communicates information over a serial port, using the
old reliable RS-232 serial protocol. The Pi has such an interface built in, preset to use pins 8 and
10 (GPIO 14 and GPIO 15).

By default, the Pi's UART interface is set up to connect to and communicate over a terminal
window, but that configuration does us no good for reading the GPS, so we need to reconfigure
it. To do that, start by making a copy of the /boot/cmdline.txt file for safekeeping:

sudo cp /boot/cmdline.txt /boot/cmdlinecopy.txt

The cmdline.txt file is used to pass arguments to the Linux kernel. When you've saved a copy,
edit the original:

sudo nano /boot/cmdline.txt

Its format is simply a space-delineated list of arguments. We need to delete the arguments that
deal with terminal communications. In its original form, the file reads

dwc_otg.lpm_enable=0 console=ttyAMAO,115200
kgdboc=ttyAMA®,115200 console=ttyl
root=/dev/mmcblk0Op6 rootfstype=ext4
elevator=deadline rootwait

Delete this portion:
console=ttyAMAO,115200 kgdboc=ttyAMAO,115200
The file should now read (all on one line, obviously):

dwc_otg.lpm_enable=0 console=tty
root=/dev/mmcblk0Op6 rootfstype=ext4
elevator=deadline rootwait

Save it, and then open the Pi’s inittab file with the following:

sudo nano /etc/inittab

Chapter 9

95

Communicating with the GPS Module

96

The inittab file describes what processes are started at bootup and during normal opera-
tion. Allwe need to do hereiscomment out the last line, which tells the Pi to start a terminal
connection. The unedited line looks like this:

T0:23:respawn: /sbin/getty
-L ttyAMA® 115200 vt100

Add a hashtag to the beginning so the line looks like this:

#T0:23:respawn: /sbin/getty
-L ttyAMAO 115200 vt100

Save the file. Now, reboot the Pi with:

sudo shutdown -r now

Communicating with the GPS Module

When the Piis back up and running, it's time to connect the GPS module and see what we
can see. Though there are a lot of pins on the GPS unit’s header board, we're using only
four of them: VIN, GND, Tx, and Rx. Connect the VIN to the Pi’s 5.5V, the GND pin to the Pi’s
GND, Tx to the Pi’s Rx pin (pin 10), and Rx to the Pi’s Tx pin (pin 8). It’s easy to remember
the direction of the last two connections: just remember that the Pi must transmit (Tx) to
the board’s receive pin (Rx), and it must receive (Rx) from the board’s transmit (Tx).

When the red LED on the GPS board starts to blink, you'll know you have power. Now you
can test it by starting the gpsd program. To do this, in a terminal, type this:

sudo gpsd /dev/ttyAMA® -F /var/run/gpsd.sock

The gpsd program is a daemon, meaning it’s a service that runs in the background, so you
won't notice anything happening when it’s running. The preceding command starts the
gpsd program, tells the daemon that the GPS device is connected to the /dev/tty/AMAO
interface, and that it should port the output of the device to the socket defined
by /var/run/gpsd.sock. If you are connecting a GPS unit via USB, this command would
instead read as follows:

sudo gpsd /dev/ttyUSBO -F /var/run/gpsd.sock
Finally, you can start the generic GPS viewer/client by typing this:
cgps -s

The cgps client simply takes the data received from the gpsd program and displays itin a
window. It may take a moment for data to stream, but you should see a window like that
in Figure 9-2.

Make a Raspberry Pi-Controlled Robot

Communicating with the GPS Module

L} L ¥
1 T ma g iy S SAE SR R | WPANE Elewr A 5S5E) Lsads |
i Loy vugay -~} 1 %3 T3 115 12 | L S |
| Lo adeE - S = | I e s 43 = .
| FER RN AT no;| 1 v - | | Py il ¥ 1
1 Sownili B3 = = L) 185 # I |
| tamdingt LD g [rrum) 1 L} | T 5 b O |
| AR -H BB i 1 - 2] P (A |
| St 5 OFIl 28 sacu) ' - k1 TR o b A |
| Lomgi e Errs af= E200% R] T | iy ol L |
i Lotitush Bred o= & ¥ i 15 i | ol L |
i A i rude B afe B8 i R ! 13 238 21 0
| Lowrss Ery (1] 1), in A it L I |
i hpean Brri afe 5 mpn jiE e EME Db [T
| Tiew of feett o, | - m [l o I |
[I Crid Sommwe BFLiee ! i I
|

Figure 9-2. cgps viewer window

If you don't see any data, only zeros, it means the GPS can't find any satellites. The blinking LED
will also slow down. One blink a second means the board is powered; as soon as it gets a fix on
some satellites, the blink will slow to once every 15 seconds. Give it some time or a clearer view
of the sky; as | said earlier, my experience is that the board is sensitive and you shouldn’t have
any problem obtaining a fix, even indoors.

If cgps always displays NO FIX and then aborts after a few seconds, you may need to restart the
gpsd daemon. To do that, enter the following:

sudo killall gpsd
sudo gpsd /dev/ttyAMA® -F /var/run/gpsd.sock

You may also want to start the gpsd program automatically, so it’s running whenever you need
it. To do that, open your rc.local file:

sudo nano /etc/rc.local

Right before the last exit 0 line, add the previous gpsd command, so the last two lines of your
file look like these:

gpsd /dev/ttyAMA® -F /var/run/gpsd.sock
exit 0

Save the file and reboot your Pi, and the gpsd daemon should be running in the background.

If your GPS doesn’t work immediately, don't get discouraged. | have found that sometimes
uninstalling (and then reinstalling) the misbehaving modules does the trick, with the following:

sudo apt-get remove gpsd
sudo apt-get remove gpsd-clients
sudo apt-get remove python-gps

followed by:

Chapter 9

97

Communicating with the GPS Module

sudo apt-get install gpsd
sudo apt-get install gpsd-clients
sudo apt-get install python-gps

Another thing you should always do is:

sudo apt-get update
sudo apt-get upgrade

Troubleshooting these modules can be tricky, as most users have added umpteen un-
known packages to their default Raspbian installation, and it's difficult to know which
modaules play well together. If you have any other libraries or modules installed that also
use the UART interface, try disabling or removing them, as they may interfere with the gpsd
module.

Once we know the chip is working and communicating, we need to use the Python gps
modaule to get useful values from the device to put into a log file. Then we can parse that
log file and import it into Google Maps or Google Earth to see where our rover has been.
The cgps client is handy, but not very useful for storing elements of GPS data such as
latitude, longitude, time, and so on.

To use the GPS seamlessly, the easiest thing to do is to start reading its values in a separate
thread. This is not a book on multithreaded programming in Python, and | don’t want to
go into too much detail as to how the code works, but a bit of information on threading
might be helpful to you.

Threads enable a program to appear to accomplish seemingly endless numbers of things
atonce. Each task is spun off into a separate thread in the computer’s memory, which runs
independently of the other threads. The threads are not being executed exactly simulta-
neously, but the processor manages to switch back and forth between threads so rapidly
that you think they're all happening at once. In Python, after importing the threading
library, you can declare an object as a member of the threading.Thread class, with two
included functions that initialize the thread and tell it what to do while it’s running. Finally
(if necessary), when the program ends, you can join the threads together and concatenate
the results. In our GPS polling program, we just keep polling the GPS module and keeping
track of our location—either printing it to the screen (for testing) or writing to a log file for
import into another program later.

To test it, try the following script:
from gps import *

import time
import threading

f = open("locations.csv", "w")
gpsd = None

class GpsPoller(threading.Thread):
def __init__ (self):

98 Make a Raspberry Pi-Controlled Robot

Using the GPS Data

threading.Thread.__init__(self)
global gpsd

gpsd = gps(mode=WATCH_ENABLE)
self.current_value = None
self.running = True

def run(self):
global gpsd
while gpsp.running:
gpsd.next()

if __name__ == '_main__':
gpsp = GpsPoller()
try:
gpsp.start()
while True:
f.write(str(gpsd.fix.longitude)
+ "," + str(gpsd.fix.latitude)
+ "\n")
time.sleep(30)
except(KeyboardInterrupt, SystemExit):
f.close()
gpsp.running = False

gpsp. join()
When you run this program, a locations.csv file will appear in the current directory, with a new
line of updated location data every 30 seconds (obviously, if you're not moving, each line will
be the same). We can play with the formatting and make it look however we need in order to
import the data into another program, such as a mapping program. To that end, I'm using
commas to delineate the data, as most online tools—should you decide to use them—import
comma-separated values (CSV) files.

Using the GPS Data

So now you know you can communicate with the GPS module, and can access the data using
the gps module’s built-in functions (. fix. latitude, . fix.longitude, etc.) You'll need a Google
account for the last part of this; once you have an account set up, open Google Maps and click
My Places on the Settings Wheel at the bottom right of the screen (Figure 9-3).

Chapter 9

99

Using the GPS Data

Fur 1 "
im— ﬂ

- o

fe Eram e wreied may u-=-_.-'

f by 1lames : . P

hrd P T
T T *

U B Hahiga £ ::_;1 .#
. - L L

Figure 9-3. My Places

In the screen that opens, click the Create Map button, followed by the “Create a new map”
button (Figure 9-4).

]
- = — - - ||I:l

[gen l- Hul:

Wi EH
g Coogle Maps Engine Mg .
- E=m

TS A AT T M

Laquirs g

e il -
v i Hvibey s

Figure 9-4. Create a new map

Follow the instructions to import/upload the locations.csv file you just created, and voila!
You now have a custom map created with the waypoints you recorded with your GPS. You
can add columns as well to your logged CSV file; spend some time experimenting with the
NMEA string that you receive from the GPS module and adding it to your data values.

100 Make a Raspberry Pi-Controlled Robot

Using the GPS Data

If you'd like to see the path created in Google Earth (useful especially if you've utilized the gps
module’s . fix.altitude function), there's a bit more work involved unless you are a Google
Earth Pro user. If you're not, you'll need to convert the data you've logged into a KML file. As it
happens, you can do that relatively easily with a Python script.

A KML file is a special sort of eXtensible Markup Language (XML) file used by Google Earth to
delineate landmarks, objects, and paths. It's formatted with opening and closing < > tags for
differentlevels ofinformation, such as <Document>and <path>and even <LineStyle>.By parsing
our locations file line by line, we can create a descriptive KML file that can be recognized by and
opened in Google Earth. Because we know how the final file needs to look, the parsing program
can be written ahead of time, and you can just plug in your log file when your rover has returned
home.

The first thing you'll probably have to do, however, is rewrite your GPS-logging script to save
the locations, with spaces separating the latitude and longitude instead of commas (this has
to do with line feeds, and parsing the file using Python, and will save you hours of debugging
later). If you prefer, write to two files at once by adding awrite line to the original script, writing
to a locations.log file as well.

Your final format_kml.py file should look something like this:

import string

#open files for reading and writing
gps = open('locations.log', 'r'")

#f = gps.readlines()

kml = open('locations.kml', 'w')

kml.write('<?xml version="1.0" encoding="UTF-8" ?>\n')
kml.write('<kml xmlns="http://www.opengis.net/kml/2.2">\n")
kml.write('<Document>\n")
kml.write('<name>Rover Path</name>\n'")
kml.write('<description>Path taken by rover</description>\n')
kml.write('<Style id="yellowLineGreenPoly">\n")
kml.write('<LineStyle><color>7f00ffff</color><width>4</width></LineStyle>\n")
kml.write('<PolyStyle><color>7f00ff00</color></PolyStyle>\n")
kml.write('</Style>\n")
kml.write('<Placemark><name>Rover Path</name>\n')
kml.write('<styleUrl>#yellowLineGreenPoly</styleUrl>\n")
kml.write('<LineString>\n")
kml.write('<extrude>l</extrude><tesselate>1</tesselate>\n')
kml.write('<altitudeMode>relative</altitudeMode>\n")
kml.write('<coordinates>\n')
for line in gps:

coordinate = string.split(line)

print coordinate

longitude=coordinate[0]

latitude=coordinate[1]

kml.write(longitude + "," + latitude + "\n")
kml.write('</coordinates>\n")
kml.write('</LineString>\n')

Chapter 9

101

Using the GPS Data

kml.write('</Placemark>\n")
kml.write('</Document>\n")
kml.write('</kml>\n")
gps.close()

kml.close()

The first part of this code simply opens the necessary files and then writes all of the nec-
essary KML formatting to locations.kmlto set up the file. Then the small five-line loop reads
through the locations.log file and places the data into the KML file. Then the script finishes

up the KML formatting and cleans up after itself by gracefully closing the input and output
files.

Your locations.kml file can now be viewed in Google Earth from any computer that has
Google Earth installed. Right-click the file and from the Open With dialog box, choose
Google Earth (Figure 9-5).

S iy

W — - e S

* Frbrm—

B Iy ey i iy
L3 e

. o i

. - i [p——

- -
W vty by - [
B il o IET |
et FECT | 47 P

- 18 - Wlom TN

B i, i - & T

I i pe— L

eyl [pEa man
Fios e S i i iy 1T

Figure 9-5. Opening KML files on a Mac

You should get a nice yellow path showing where your rover has been (Figure 9-6).

102 Make a Raspberry Pi-Controlled Robot

Using the GPS Data

Figure 9-6. Example rover path

Of course, you can do tons of things with these location files, but one of the most interesting
is to use them as waypointsin a preprogrammed route for the rover to follow. Plug in a sequence
of points, and using the GPS module, your rover should be able to navigate to each of those
locations and execute a preprogrammed sequence of events without any assistance from you.
That, of course, is assuming that the terrain between point A and point B is navigable by the
rover. Traveling between Flagstaff, AZ, and Cedar City, UT, for example, doesn't take into account
theratherlarge canyonthatlies between those two cities. (If your rover can successfully navigate
the Grand Canyon autonomously, I'd be very interested in seeing it. So would NASA.)

This is just an introduction to the things you can do with your GPS module. In the next chapter,
we'll take a look at adding sensors to the rover so you can do more than simply travel from point
to point.

Chapter9 103

Sensors, Sensors, | .
Sensors

When you're building a robot, some of its most important parts are its sensors. If the computer
(the Pi, in our case) is the rover’s brain, then the sensors you choose to pack into it are its eyes
(a camera), ears (ultrasound), touch (reed switches and thermometers), equilibrium (acceler-
ometers), and even senses that humans don't have, like magnetic field detection. The goal of
most robots is not just to have sensors to receive input from the outside world, but to act on
that input and do something. In the preceding chapter, we learned how to remember where
our rover has been, and we touched on the possibility of autonomously navigating to those
locations. Butjust navigating to them is kind of boring unless you can then use sensors to gather
information from those points.

There are a lot of sensor possibilities you can use on your rover; | went over a few of them in
Chapter 4, and if you spend a bit of time browsing some of the popular electronic sites such as
Adafruit or Sparkfun with a credit card and no spending limit, it's pretty much a sure bet that
before long you'll have more sensors than you know what to do with. There are accelerometers
and magnetometers and Hall effect sensors and reed switches and ultrasonic range finders and
laser range finders, and the list goes on and on. In fact, you may be limited only by the size of
your rover’s body and by the number of GPIO pins available to you. (If you do find yourself
running out of room, you may want to consider trying the Gertboard to expand your I/0 po-
tential.) In the meantime, two medium-sized breadboards should be plenty, depending on how
well they fit in your rover’s chassis.

In this chapter, | wanted to introduce some of the most common sensors and walk you through
the process of setting them up and reading from them. Some sensors are quite basic—all you
have to do is plug in electrical power and one or two signal wires, and you read the results.
Othersrequire libraries from third parties, like the SH15 temperature sensors. And some of them
use the12C protocol,acommon way of communicating with external devices (sensors and other
things) that are connected to the Pi. (For more on the 12C protocol, look to the end of this
chapter.)

105

Sensors, Sensors, Sensors

106

Obtaining and Using Sensor Code

An important thing to remember whenever you interface that sensor with the Pi. Remember: as a
buy a sensor, especially from one of the aforemen- programmer, it makes no sense to reinvent the
tioned sites, is that often they have example or wheel, and there’s no shame in reusing existing
demonstration code available for download. Some- code.

times the code is only for the Arduino, as that’s the
original market for many of these sensors, but many
times there is Python code for the Pi as well. If there
isnt code, often a quick Google search will be fruit-
ful—chances are you're not the first person to try to

And if you do end up having to write brand new
code from scratch, consider sharing it with the Pi
community. Someone else will surely get as much
use out of it as you will.

Most of these sensors will come as fully assembled PCBs, but with the option of adding a
row of soldered headers. | fully encourage you to solder the headers onto the board. It
makes connecting and disconnecting each sensor via a breadboard a snap, and allows you
to add to and subtract from your project easily. If you have more sensors than you can
comfortably connect, having them all breadboarded will allow you to swap them out as
needed.

If you're still new to soldering, fear not: soldering headers to a board is a good way to get
used to the process, as the solder-phobic coating on the boards makes it pretty easy to
keep the solder where it's supposed to be. Just remember: heat the joint, not the solder,
and you should be fine.

The Art of Soldering

Possibly one of the most valuable skills toacquire « Tinif necessary: melt a little solder onto a
if you're going to be working with electronics is part to prepare it for connection.

the ability to solder well. At its core, it's really

nothing more than melting a soft metal wire to « Connect the parts: make the connection
securely connect two parts of a circuit together, mechanical if possible (twisting wires to-
but there is definitely an art to it, and just like any gether, for example).

other skill, it comes more and more easily the

more you practice. A few hours with a soldering ~ * Heat the parts: use the soldering iron to
iron can make a world of difference in your sol- heat the parts, not the solder. When the
dered joints. joint is hot enough, the solder will flow

easily, right where you want it.
There are four things to remember when solder-
ing two pieces together: There are all sorts of YouTube instructional vid-

eos on how to solder; Makezine.com has a par-
« Prepare your surfaces: clean and rough ticularly good resource-filled page at http://make
surfaces make a better connection. zine.com/2006/04/10/how-to-solder-resources.

Make a Raspberry Pi-Controlled Robot

SHT15 Temperature Sensor

SHT15 Temperature Sensor

The Sensirion SHT15 is kind of a pricey sensor, retailing at about $30-$35, but it’s also easy to
install and use, which is why | recommend it. It doesn’t use the 12C protocol (though it has pins
labeled DATA and CLK, so it looks like it does); rather, you just plug the wires into your Pi, install
the necessary library, and read the values it sends.

To use it, you'll first need to connect it. For our example, connect the Vcc pin to the Pi's 5V pin,
and the GND pin to the Pi’s GND. Then connect the CLK pin to pin 7, and the DATA pin to pin
11.You'll also need to install the rpiSht1x Python library by Luca Nobili. This is not a system-wide
library, so navigate to within the directory where you'll be writing all of your rover code and
download the library with

wget http://bit.ly/114z4Lh
When it’s finished downloading, rename the file from the bit.ly name to what it should be with
mv 1i4z4Lh rpiShtix-1.2.tar.gz
and then expand the result with
tar -xvzf rpiShtix-1.2.tar.gz
Navigate into the resulting directory and install the library with
sudo python setup.py install

That should make the library accessible to you, so move up one level (back to your rover direc-
tory) and try the following script:

from shtix.Shtix import Shtilx as SHT1x
dataPin = 11

clkPin = 7

shtix = SHT1x(dataPin, clkPin,
SHT1x.GPIO_BOARD)

temperature = shtix.read_temperature_C()
humidity = shtix.read_humidity()
dewPoint = shtix.calculate_dew_point(temperature, humidity)

print ("Temperature: {} Humidity: {} Dew Point: {}".format(temperature,
humidity, dewPoint))

Save this with the filename readsht15.py, and run it with sudo:
sudo python readshti5.py
You should be greeted by a line of text describing your current conditions, something like

Temperature: 72.824 Humidity: 24.2825
Dew Point: 1.221063

This is the function you can use in your final rover code to access current temperature and
humidity conditions.

Chapter 10

107

Ultrasonic Sensor

108

Ultrasonic Sensor

The HC-SR04 ultrasonic range finder on the rover uses ultrasound to determine the dis-
tance between itand a reflective surface such as a wall, a tree, ora person. The sensor sends
an ultrasonic pulse, listens for the echo, and then measures how long it took to receive
that echo. The HC-SR04 is easy to configure on the Pi, and needs only two GPIO pins in
order to work: one output pin and one input pin. The one caveat is that you should place
a 1K resistor between the sensor and the Pi’s input pin, as the HC-SR04 outputs 5V. This
might damage the Pi’s pin, as the Pi expects 3.3V as inputs, so aresistor brings theincoming
voltage down to a Pi-safe level.

To power the HC-SR04, connect the sensor’s VVcc and GND pins to the Pi's 5V and GND pins,
respectively. Then choose two GPIO pins to be the trigger and echo pins. The trigger pin
will be an output, and the echo pin will be an input. According to its datasheet, a quick ON
pulse of 10 microseconds to the trigger pin will trigger the sensor to send eight ultrasonic
40KHz cycles and listen for the return on the echo pin. Luckily for us, Python'’s time library
can be used to send microsecond-long pulses.

For the purposes of experimentation, let’s hook up the sensor to pin 15 as the trigger and
pin 13 as the echo. You can then use the following code to test the range finder:

import time
import RP1.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
GPIO.setup(23, GPIO.OUT)
GPIO.setup(24, GPIO.IN)

def read_distance():
GPIO.output(23, True)
time.sleep(0.005)
GPIO.output(23, False)

while GPIO.input(24) == 0:
signaloff = time.time()

while GPIO.1input(24) == 1:
signalon = time.time()

timepassed = signalon - signaloff
distance = timepassed * 17000
return distance

while True:
print 'Distance: %f cm' %read_distance()

After importing the necessary libraries, we set up the GPIO pins to read and write. Then,
inthe read_distance() function, we send a 10-microsecond pulse to the sensor to activate
the ultrasonic cycles.

Make a Raspberry Pi-Controlled Robot

Photoresistor

After the pulse is sent, we listen for the echo on pin 27 until we get a 1 (meaning an echo has
been sensed). We then mark how long it’s been since the pulse was sent, multiply that by 17,000
(as directed by the README file) to convert it to centimeters, print it, and repeat with a while
loop.

When you save and run this script (as sudo, remember, because you're accessing the GPIO pins),
you should be able to wave your hand in front of the sensor and watch the values change with
the distance to your hand. Keep this code handy, as the read_distance function will be used
in our final code.

Photoresistor

A useful sensor to have in various situations, a photoresistor is a resistor whose resistance
changes depending on the amount of ambient light (Figure 10-1).

Figure 10-1. Photoresistor

The photoresistor exhibits photoconductivity; in other words, the resistance decreases as the
amount of incident light increases. Many of these resistors have a phenomenally wide range:
nearly no resistance in full-light conditions, and up to several megaohms of resistance in near-
dark. Photoresistors can tell you that your rover is working at night, for instance, or that it’s in
a tunnel, or that it's been eaten by a velociraptor.

The one caveat to using a photoresistor, however, is that you can't just plug it into your Pi and
expect to read values from it. The photoresistor outputs analog values, and the Pi understands
only digital ones. Thus, in order to convert its values into something the Pi can understand, you
must hook it up to an analog-to-digital converter, or ADC chip.

The chipluseisthe MCP3008, an eight-channel 10-bit converter ICavailable from several online
retailersforaround $5. Yes, you can easily geta more precise chip, with a 12- ora 16-bit converter,
but unless you're measuring something that requires extreme precision, | don’t think it’s nec-
essary. All we need are ambient light levels, and 10-bit precision seems to be plenty. It has 16
pins; pins 1-8 (on the left side) are the inputs, and pins 9-16 are voltage, ground, and data pins
(Figure 10-2).

Chapter 10

109

Photoresistor

110

(1 %

L Yiar

(1 ACHD

] CLK
1Dy

H Ciw

[CRrsHDN
] CeaMD

TEEETEY

Figure 10-2. MCP3008 pinout

To read from the photoresistor, we'll use only one of the MCP3008's inputs, leaving seven
inputs free for other analog devices we might wish to add later. The chip uses the SPI bus
protocol, which is supported by the GPIO pins.

To use the chip and the photoresistor, you'll need to start by enabling the SPI hardware
interface on the Pi. You may need to edit your blacklist file, if you have one. The black-
list.conffile is used by the Pi to prevent it from loading unnecessary and unused modules,
and it exists only in earlier versions of Raspbian. Later versions don’t have any modules
blocked. See if /etc/modprobe.d/raspi-blacklist.conf exists on your Pi; if it does, comment
out the line

spi-bcm2708

and reboot. After rebooting, if you type smod, you should see spi_bcm2708 included in the
output—most likely toward the end.

You'll then need to install the Python SPl wrapper, with a library called py-spidev. First make
sure you have the python-dev package:

sudo apt-get install python-dev
Then navigate to your rover’s main directory, and download and install py-spidev with

wget https://raw.github.com/doceme/
py-spidev/master/setup.py

wget https://raw.github.com/doceme/
py-spidev/master/spidev_module.c
sudo python setup.py install

The library should be ready for use.

Now you can connectthe chip to the Pi.Pins9and 14 on the MCP3008 should be connected
to GND on the Pj; pins 15 and 16 should be connected to the Pi’s 3.3V (you'll need to use
one of the power rails on your breadboard). Then connect pin 13 to GPIO 11 on the Pi, pin
12to GPIO 9, pin 11 to GPIO 10, and pin 10 to GPIO 8. Finally, for testing purposes, connect
one leg of the photoresistor to pin 1, and connect the other leg to the ground rail.

Make a Raspberry Pi—Controlled Robot

Magnetic Sensor

When it’s connected, all you need to do is open an SPI bus with a Python script and read the
values from the resistor. The script should be something like this:

import time
import spidev

spi = spidev.Spidev()
spiopen(0, 0)

def readChannel(channel):
adc = spi.xfer2([1,(8+channel)<<4,0])
data = ((adc[1]&3) << 8) + adc[2]
return data

while True:
lightLevel = readChannel(0)
print "Light level: " + str(readChannel(0))
time.sleep(1)

Running this script (as sudo, because you're accessing the GPIO pins) should result in a running
list of the values of the light hitting the resistor. The readChannel() function sends three bytes
(00000001, 10000000, and 00000000) to the chip, which then responds with three different bytes.
The data is extracted from the response and returned. You can test the system by waving your
hand in front of the resistor to block out some light. If the resistance value changes, you know
that everything is working properly. As with the other scripts, keep this one in your main rover
folder for use in your final program.

Magnetic Sensor

The magnetic sensor, or Hall effect sensor, is a nifty little device that doesn’t have a whole lot
of uses outside of a certain small niche of applications. While I'm not certain it may be used on
the rover, you may find yourself wanting to know if you're parked in the middle of a strong
magnetic field (Figure 10-3).

Chapter 10

11

Magnetic Sensor

112

Figure 10-3. Hall effect magnetic sensor

At its core, the Hall effect sensor is nothing more than a simple switch, so no real pro-
gramming is required, nor are there any special libraries. To test it, connect the red (Vcc)
pin to pin 2 on the Pi, connect the black pin to the Pi's GND pin (6), and connect the white
signal wire to pin 11. Now just try the following code:

import time
import RP1.GPIO as GPIO
GPIO.setwarnings(false)
GPIO.setmode(GPIO0.BOARD)
GPIO.setup(11l, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
prev_input = 0
while True:
input = GPIO.input(11)
if ((not prev_1input) and input):
print "Field changed."
prev_input = input
time.sleep(0.05)

Make a Raspberry Pi-Controlled Robot

Reed Switch

This script continually polls pin 11 to see if the input has changed (between prev_input to
input). When you run it, your terminal should remain blank until you wave a magnet near the
sensor. (You might have to experiment with different proximities and speeds; my experience is
that the magnet has to come within a few inches of the sensor to register as a “pass”). Once you
have it working, you can mount the magnet wherever you'd like to sense it, and poll the Hall
effect sensor. When the magnetic field has changed, you know your robot is next to a magnet.

Pull-Ups and Pull-Downs

The fifth line in the magnetic sensor code bears
some explanation, because it's an important con-
cept that you'll come across often in your dealings
with sensors. Whenever you set up a GPIO pin as an
INPUT and connect a sensor to it, the pin becomes
what's known as a floating input unless you do
something special with it. This means that until a
value is registered at that pin, the value of that pin
could beanythingatall:0volts, 3.3 volts, oranything
in between. You can't predict (or act upon) such a

input value is read. In a circuit, this is normally done
with a pull-up or pull-down resistor—a resistor that
connects the pin to either GND or Vcc. This “pulls”
the value of the pin to either LOW or HIGH, respec-
tively, until a “real” value is read. Luckily, with the Pi’s
GPIO library, we have the ability to do
that in code, with pull_up_down =
GPIO.PUD_DOWN. This line means that if no value is
readatpin 11, itwillread 0. Likewise, pull_up_down
= GPIO.PUD_UP pullsthe pinto 1.

floating input value. You need a way to set that
floating input to a known value, like 0, until a true

Reed Switch

Probably the easiest switch to program and connect is the reed switch, also called a snap-action
switch (Figure 10-4).

The reed switch is often used by robots to determine the limits of some form of motion, from
obstacle avoidance to grip control.It’s a simple concept: the switch is normally open, permitting
no current to pass. When an object presses on the switch, current is allowed through and the
connected GPIO pin registers an INPUT.

Because you're using a physical switch, it's important that you're familiar with the concept of
debouncing. Switches are often made of springy metal, and that can cause them to quickly
“bounce” apart one or more times when they're first activated, before they finally close. An old
analog circuit wouldn't register that “chatter,” but a processor such as the Pi has no problem
registering them. In the microseconds after contactis made, the Pi might be reading something
like ON, OFF, OFF, ON, ON, OFF, ON, OFF, ON, OFF, ON, ON, OFF, ON, ON, OFF, ON, before settling
down to a steady ON state. You and | know that the switch was triggered only once, but to the
Pi, there was a festival of multiple switch triggers. This can cause problems when the program
is running: did the robot run into an obstacle once, or dozens of times? The solution lies in
software. By telling the Pi to wait until the chatter has quieted before reading a value, we de-
bounce the switch.

Chapter 10

113

Reed Switch

114

Figure 10-4. Reed switch

Early versions of the GPIO library made you do this yourself, in code, but later versions give
it to you as a built-in capability. To demonstrate, I'll also show you the concept of an
interrupt, where the Pi will stop whatever it’s doing and alert you when something inter-
esting happens at a pin.

Start by connecting the switch to your Pi. Wire one side of it to pin 11 (GPIO 17) and the
other to the Pi's GND pin. If we pull the pin HIGH with a virtual pull-up resistor, then the
input pin will register a switch close as being connected to ground. All that's left is to write
some code to read it:

import time

import RP1.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)

GPIO.setup(11, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def switch_closed(channel):
print "Switch closed"

Make a Raspberry Pi-Controlled Robot

Motion Sensor

This next line is the interrupt
GPIO.add_event_detect(11, GPIO.FALLING, callback=switch_closed, bouncetime=300)

while True:
time.sleep(10)

In the switch_closed(channel) function, we define what we want to happen when a switch
closeis detected. Then we use the GPI0.add_event_detect() function to look for afalling edge,
with a bounce time of 300 milliseconds. (A falling edge is what happens when a signal that was
high goes low; similarly, when a formerly low signal goes high, it's a rising edge.) When the main
loop is started (all it does is wait, in this simple demo script), it waits for a falling edge to be
detected on GPIO 17, at which point it calls the callback function.

The debounce and the interrupt are both handy tools for your robotic toolkit. Keep this code
handy in your rover folder.

Motion Sensor

The motion sensor | use in my projects, the Parallax RB-PIx-75, works by sensing changes in the
infrared “background” of its field of view (Figure 10-5).

Figure 10-5. IR motion sensor

Changes in the infrared signature cause the sensor to output a HIGH signal on its output pin.
It's not so much a motion sensor or an IR sensor as it is a combination of the two. Like the

Chapter10 115

[2C Sensors

116

magnetic sensor, it’s really nothing more than a fancy switch, so connecting and program-
ming it is quite simple.

It has three pins: Vcc, GND, and Output. Looking at the sensor from the point of view of
Figure 10-5, the pins are OUT, (+), and (-). It can use any input voltage from 3V to 6V, so
connect the GND pin to the Pi’s GND, the Vcc to either 3.3V or 5V, and the OUT pin to pin
11 (GPIO 17) for this example. To test our code, let's connect an LED to signal if the sensor
is tripped. Connect pin 13 (GPIO 27) to a resistor, and then connect the positive lead of an
LED to the resistor’s other leg. Finally, connect the LED’s negative lead to GND on your Pi.
You should now be ready to try the following script:

import RP1.GPIO as GPIO
import time

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)

GPIO.setup(11, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(13, GPIO.OUT)

while True:
if GPIO.input (11):
GPIO.output (13, 1)
else:
GPIO.output (13, 0)

That's it! When you run the script (remember to use sudo, because you're accessing the
GPIO pins), you should see the LED light when you move your hand around the sensor,
and then go out again when there is no movement for a few seconds. Keep this code in
your main rover folder.

When working with LEDs, you should always use an inline resistor to limit
the current passing through the LED. It’s very easy to burn out an LED, and
using aresistoris anexcellent habitto getinto. Many LED resistor calculators
are available online if you aren’t sure what value of resistor to use; | like the
one at http://ledz.com/?p=zz.led.resistor.calculator.

12C Sensors

12C, also referred to as I-squared-C or Inter-Integrated Circuit, has been called the serial
protocol on steroids. It allows a large number of connected devices to communicate on a
circuit, orbus, using only three wires:a dataline, a clockline,and agroundline.One machine
on the bus serves as the master, and the other devices are referred to as slaves. Each device
is called a node, and each slave node has a 7-bit address, such as 0x77 or 0x43. When the
master node needs to communicate with a particular slave node, it transmits a start bit,
followed by the slave’s address, on the data (SDA) line. The slave sees its address come

Make a Raspberry Pi-Controlled Robot

[2C Sensors

across the data line and responds with an acknowledgment, while the other slaves go back to
waiting to be called on. The master and slave then communicate with each other, using the
clockline (SCL) to synchronize their communications, until all messages have been transmitted.

The Raspberry Pi has two GPIO pins, 3 and 5, that are preconfigured as the 12C protocol’s SDA
(data) and SCL (clock) pins. Any sensor that uses the 12C protocol can be connected to these
pins to easily communicate with the Pi, which serves as the master node. If you end up using
more than one 12C sensor on your rover, you may find it helpful to add another small breadboard
to the rover, with the two power rails running down the side of the board being used for the
data and clock lines rather than power.

To use the 12C protocol on the Pi, you first need to enable it by editing a few system files. Start
with sudo nano /etc/modules and add the following lines to the end of the file:

12c-bcm2708
i12c-dev

Next, install the 12C utilities with the following:

sudo apt-get install python-smbus
sudo apt-get install 12c-tools

Finally, you may need to edit your blacklist file, if you have one. (Remember, if it exists, you can
find it in /etc/modprobe.d/raspi-blacklist.conf.) If you have one, comment out the following two
lines by adding a hashtag to the beginning of each line:

#blacklist spi-bcm2708
#blacklist 12c-bcm2708

Save the file, then reboot your Pi with the following, and you should be ready to use the 12C
protocol with your sensors:

sudo shutdown -r now

To see if everything installed correctly, try running the 12cdetect utility:
sudo i2cdetect -y 1

It should bring up the screen in Figure 10-6.

Obviously, no devices are showing up in the illustration because we haven't plugged any in yet,
but the tool is working. If by chance you have devices plugged in but they don’t show up, or if
the tool fails to start at all, instead try typing the following:

sudo i2cdetect -y 0

The 1 or 0 flag depends on the Pi revision you happen to have. If you have a Revision 1 board,
you'll be using the 0 flag; Revision 2 owners will need to use the 1.

Chapter 10

117

|2C Sensors

Fe I8 Me ek
pidrwspherrppl - AME § B Cqdetect -y | "
g L 2 2. 45 4 7" B8 a @8-c 40 a

[= =

gy -

]

01

=i

=0:

:I'ﬂ; . i o N -
willd gnahedrppl - onaEL 5

Figure 10-6. The i2cdetect utility

To test the 12cdetect utility, connect an 12C sensor to your Pi, such as the digital compass
—the HM(C5883L. Connect the compass’s Vcc and GND pins to the Pi’s 2 and 6 pins, and
then the SDA and SCL pins to pins 3 and 5, respectively. When you start the 12cdetect
utility, you should now see the results in Figure 10-7, which shows the compass'’s (precon-
figured) 12C address of 0x1e.

- P Py CERATT -

il i Ta+ ew

pifiraspberrypl - EEEE & sude 12cdeferi g 0]
B I 2 3 &% &-F 0B & B L dF =

D= "

16 . I

M-

e

L

S

A= - T -

W -

pigeaspbecrppl - ikl &

Figure 10-7. i2cdetect showing connected HMC5883L

118 Make a Raspberry Pi-Controlled Robot

[2C Sensors

HMC5883L Compass

You have it connected now, so let’s configure the compass. The following script sets up the 12C
bus, and after reading the values from the compass, performs a little bit of math wizardry to
translate its readings into a format that you and | are used to:

import smbus
import math

bus = smbus.SMBus(0)
address = 0Oxle

def read_byte(adr):
return bus.read_byte_data(address, adr)

def read_word(adr):
high = bus.read_byte data(address, adr)
low = bus.read_byte_data(address, adr+1)
val = (high << 8) + low
return val

def read_word_2c(adr):
val = read_word(adr)
if val >= 0x8000:
return -((65535 - val) + 1)
else:
return val

def write_byte(adr, value):
bus.write_byte_data(address, adr, value)

write_byte (0, 0b01110000)
write_byte (1, 0b00100000)
write_byte (2, 0b00OOOOEO)

scale = 0.92
x_offset = -39
y_offset = -100

x_out = (read_word_2c(3) - x_offset) * scale
y_out = (read_word_2c(7) - y_offset) * scale

bearing = math.atan2(y_out, x_out)
if bearing < 0:
bearing += 2 * math.pi

print "Bearing: ", math.degrees(bearing)
Here, after importing the necessary libraries (smbus and math), we define functions
(read_byte(), read_word(), read_word2c(), and write_byte()) to read from and write values
(either single bytes or 8-bit values) to the sensor’s [12C address. The three write_byte() lines
write the values 112,32,and 0 to the sensorto configure it for reading. Those values are normally
listed in a sensor’s datasheet.

Chapter 10

119

|2C Sensors

120

The scriptthen reads the x-axis and y-axis values from the sensor and uses the math library’s
atan2() (inverse tangent) function to find the sensor’s bearing. The x_offset and y_off
set values are subject to change and are dependent on your current location on the Earth’s
surface; the easiest way to determine what they should beis to run the script with aworking
compass nearby to compare values. When you run the script, remember that the side of
the chip with the soldered headersis the directionin which the board is “pointed.” Compare
the readings and tweak the values of the x_offset and y_offset values until the readings
from the two compasses match. Now you can determine which direction your rover is
headed. You shouldn’t experience any interference from your Pi or from the motors on
your magnetic sensor; the fields generated by those devices are too weak to make a dif-
ference in the sensor’s readings.

As always, save this script in your rover’s folder for addition to your main program.

BMP180P Barometer

The BMP180P barometer/pressure chip is another sensor that runs on the 12C protocol.
Again, connect the SDA and SCL pins to either the Pi’s 3 and 5 pins, or the rails on the
breadboard if you've gone that route, and the GND pin to the Pi’s 6 pin. This time, however,
connecttheVccpintothePi's 1 pin, notthe 2 pin. This sensor needs only 3.3V, and powering
it with 3.3V instead of 5V ensures that it will output only 3.3V and not damage the Pi’s
delicate GPIO pins. After you've connected everything, run the i2cdetect utility to make
sure that you see the sensor’s address, which should be 0x77.

Like a few of the other sensors, this one needs an external library in order to work, and that
library is available from Adafruit. In your terminal, make sure you're in the main rover folder
and type the following:

wget http://bit.ly/NJZOTr

Rename the downloaded file with this command and the library is ready to use, as long as
it's in the same folder as your script:

mv NJZOTr Adafruit_BMPO85.py
You'll also need another script from Adafruit in the same directory, the Adafruit_I2C
library. To get it, in a terminal enter the following:

wget http://bit.ly/1pHgMxF
and then rename it with the following:

mv 1pHgMxF Adafruit_I2C.py

Now you have both necessary libraries. To read from the sensor, create the following script
in your rover folder to convert to Fahrenheit:

from Adafruit_BMPO85 import BMPO85
bmp = BMPO85(0x77)

temp = bmp.readTemperature()
pressure = bmp.readPressure()
altitude = bmp.readAltitude()

Make a Raspberry Pi-Controlled Robot

[2C Sensors

print "Temperature: %.2f C" %temp

print "Pressure: %.2f hPa" %(pressure/)

print "Altitude: %.2f" %altitude
The Adafruit library is nice because it handles all the intricacies of communicating over the 12C
bus for us; all we have to do is call the functions readTemperature(), readPressure(), and
readAltitude(). If you're notin one of the 99% of countries using Celsius for temperature, just
add the following line:

temp = temp*9/5 + 32

Nintendo Wii Devices
You can also use the I2C library to communicate with other devices, of course; it's not unheard

of to connect a Nintendo Wii nunchuk to the Pi with a special adapter, called a Wiichuck adapter
(Figure 10-8).

Figure 10-8. Wiichuck adapter

You can then read the values from the nunchuk’s joystick, buttons, and onboard accelerometer
to control things like motors, cameras, and other parts of the robot.

Chapter10 121

|2C Sensors

122

Camera

The last thing we need to go over is the Pi’s camera; it is technically a sensor, and you can
use it to take pictures of your rover’s surroundings and even stream a live feed over the
local network and navigate that way.

Hooking up the camera is fairly straightforward. If you're sticking with the flex cable that
came with the camera, you're almost finished already. Insert the flex cable into the small
connector between the Ethernet port and the HDMI connector. To insert it, you may have
to pull up slightly on the tabs on both sides of the connector. Insert the cable with the
silver connections facing the HDMI port, as far as it will go, and then press down on the
edges of the connector to lock it into place.

If you're using an extension cable such as the one from BitWizard, follow their instructions
as to hooking up the flex and the ribbon cables. When you're finished connecting the
camera, enable it in the raspi-config file if you haven't done so already by typing the fol-
lowing and enabling it there (option 5):

sudo raspi-config
Once enabled, to test the camera, open a terminal window and type:
raspistill -o image.jpg
After a short pause, image.jpg should appear in the current directory.
Raspistill is an amazing program. Technically, all it does is take still pictures with the Rasp-
berry Pi camera module. In reality, it has a whole series of options, including the ability to

take time-lapse sequences, to adjust image resolution and image size, and so forth. Play
around with the flags listed on the Raspberry Pi site’s camera documentation page.

To use the Python library now available for the camera (Python 2.7 and above), enter the
following in your terminal to install it:

sudo apt-get update
sudo apt-get install python-picamera
You're now ready to use the camera. If you plan to place the camera in the robotic arm
attachment, refer back to Chapter 7 as to how to mount it there. Then you can use it with
the Python library with a script such as this:
import picamera
camera = picamera.PiCamera()
camera.capture('image.jpg')
This will simply capture image.jpg and store it in the local directory. One nice thing about
the Python library as opposed to the command-line interface is that the defaultimage size
for the Python module is much smaller than the command-line default.

If you would like to record video with the camera, it’s as simple as this:

import picamera
import time

Make a Raspberry Pi-Controlled Robot

[2C Sensors

camera = picamera.PiCamera()
camera.start_recording('video.h264")
time.sleep(5)
camera.stop_recording()

This will record for 5 seconds and then stop.

Live camera feed

All of these are nice if you simply want to travel to a point and then take pictures or video after
you arrive. But what if you would like to navigate using the feed from the camera? This, too, is
possible, by streaming the video feed from the camera over the local ad hoc network you've
set up and playing the stream on the computer you're using to remotely control the Pi. To do
this, you'll need the VLC media player installed on both the Pi and your control computer. On
the Pi, it's a simple:

sudo apt-get install vlc
to install it; on your controlling computer, VLC is available for Linux, Windows, and OS X.

The stream will be broadcast using Real Time Streaming Protocol (RTSP). This protocol is a
common network video-streaming interface, and VLC is easy to set up to both transmit and
receive and decode it. Once VLC is installed on the Pi, start the stream with the following:

raspivid -o - -t © -n -w 600 -h 400 -fps 12 |

cvlc -vvv stream:///dev/stdin --sout

"#rtp{sdp=rtsp://:8554/}"' :demux=h264
Then move to your control computer, open VLC, and open a network stream from rtsp: //<Your
Pi IP>:8554. It’s a small, 600 x 400 window, so not too much bandwidth should be needed.
There’s also likely to be a delay of several seconds, so this may not be an optimal way of con-
trolling your rover in a situation where fast response times are important.

You may run into the problem of your Pi shutting down as soon as you issue the
streaming command shown here. It seems that the command draws a lot of
power—sometimes, enough to shut everything off. If that does happen, try a
different power supply (if you're powering the Pi from a USB wall charger) or a
different battery pack (if you're using batteries such as the Li-Poly battery pack).
Experimentation is always helpful; | had success simply by using a shorter USB
power cable at one point.

Ifyou can't get it to work, your particular Pi/power/VLC combination may just be
too ill-suited for live streaming video. In that case, you'll just have to remain in
view of your rover to control it—which is not the end of the world.

That by no means covers all of the sensors that are available for your rover, but it should give
you a pretty good start. Many sensors are just switches at heart, and if not, there may be alibrary
available to read from them. Or they may follow the 12C protocol, making them easy to add to

Chapter 10

123

|2C Sensors

your rover’s sensor network. In the next chapter, we'll cover putting all of these snippets
of code together and controlling (and reading from) the rover by using one program.

124 Make a Raspberry Pi-Controlled Robot

Final Code and | .
Conclusion

A

At this point in the build, you should have at least two things: a working rover, and a directory
on the Pi full of small Python scripts that do all kinds of neat things separately, but don’t work
together very well. As the last part of this build, we'll have to combine all of the scripts into one
large working program that does everything we expect it to.

When setting up this program,we need to ask ourselves afew questions. First, how many sensors
are we going to be using? There are a lot of different ones, and you have only a limited number
of GPIO pins available (unless they're all on the 12C bus). Also, some of the sensors don't play
well together in the same program. For instance, the SHT15 temperature sensor works great
when you test it by itself. But when you try to use another GPIO pin as an output (such as for a
motor), the shtix library re-declares the GPIO pin setup, which negates all the setup you do in
the main script. Not to worry, of course—we can use the getTemperature() function from the
BMP180 sensor to get the ambient temperature.

So once you've figured out what sensors you're going to use, and where to place them, and
how to wire them, all that remains is to write the final program. Simple, right? Actually, as | said
at the beginning of the book, if you've been following along, most of this work is already done
—all you're doing is putting the pieces together.

| designed the program to be interactive. There’s no robotic autonomy in this program, as such
a program would probably end up being thousands of lines of code. Rather, the program dis-
plays all pertinent sensor data (temperature, pressure, bearing, location, etc.) and then asks for
input from the user as to what to do next. If you tell the rover to move forward, the program
calls the moveForward() function. Then the sensors are polled, the sensor data is displayed, and
the user is prompted again. The moveForward() function continues to execute until the user
stops it. This allows the rover to continue to move until you tell it otherwise, rather than moving
forward a few feet and then stopping and waiting for further instructions.

If you choose to build on this script and pursue autonomous behavior, your best bet is probably
to go through a continuous loop, polling the sensors for data one by one. You can then put

125

Final Code and Conclusion

126

interrupts related to each sensor that tell the rover what to do if any of the sensors read a
particular value.

Perhaps the most obvious use of this algorithm is to make the rover follow a preprogram-
med route using GPS waypoints. By calling gpsd. fix.latitude and gpsd. fix.longitude,
you can determine whether the rover should move forward, turn left, or turn right. When
those values match your first set of coordinates, you can execute a preplanned action and
then continue. To give you an example, using the GPS sensor only:

Destination: 36.21 degrees N, 116.53 degrees W.
When we reach that point, turn due south and

continue driving

Assume that we're approaching from the West

while True:
curLat = gpsd.fix.latitude
curLon = gpsd.fix.longitude
Longitude degrees W are delineated with a
negative sign in NMEA strings
if (curLat == 36.21) and (curLon == -116.53):
allStop()
spinLeft()
time.sleep(1)
allStop()
takePicture()
elif curLat < 36.21:
You've gone too far,
back up
moveBackward()
continue
elif curLat > 36.21:
You're not there yet
Keep going
moveForward()
continue

This is by no means a complete section of code, has not been tested, and barely covers any
of the possible actions based on the rover’s location, but it should give you some ideas,
both of what is possible with a rover and what is required to achieve it. Programming an
“intelligent” rover or robot is no small task, as you need to try to plan for all possible
situations and then program responses to those situations—at least until artificial intelli-
gence makes some serious strides forward. That, in fact, is part of the fun of robotic pro-
gramming: not only trying to anticipate all possible situations, but also trying to program
behaviors and algorithms so that the rover can react to those situations, as well as those
that you (inevitably) didn't think of or plan for. This makes what | call a robust program;
should something unexpected arise, the rover has a default behavior that it can fall back
on that will always work.

Inthe meantime, you'll be driving your rover with your laptop, calling functions by pressing
keys. I've tried to keep to the traditional gaming keymap: W to move forward, Z to move

Make a Raspberry Pi-Controlled Robot

Final Code and Conclusion

backward, A and D to move left and right, respectively, and S to stop. In addition, there are keys
to raise the arm, lower the arm, and take a picture. In each case, the program asks for user input,
calls the required function, waits a second, polls the sensors, clears the screen, and displays the
sensor readings and the input prompt again. Before everything else starts, the program asks
the user if a GPS is connected; if you don't have one connected, the program skips the location
query. Thisis done becauseif the program tries to query a nonexistent GPS module, it will break.

This script runs the rover,

displaying readings from the sensors
every time it gets input

from the user

import time

import os

import RP1.GPIO as GPIO

import subprocess

from shtix.Shtix import Shtilx as SHT1x
import smbus

import math

from gps import *

import threading

from Adafruit_BMPO85 import BMPO85

GPIO.setwarnings(False)
GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings (False)

Motor setup

19 = IN1
21 = ENA
23 = IN2

GPIO.setup(19, GPIO.OUT)
GPIO.setup(21, GPIO.OUT)
GPIO.setup(23, GPIO.OUT)

22 = IN3
24 = ENB
26 = IN4

GPIO.setup(22, GPIO.OUT)
GPIO.setup(24, GPIO.OUT)
GPIO.setup(26, GPIO.OUT)

def moveForward():
r forward
GPIO.output(21, 1)
GPIO.output(19, 0)
GPIO.output(23, 1)
1l forward
GPIO.output(24, 1)
GPIO.output(22, 0)
GPIO.output(26, 1)

def moveBackward():
r backward

Chapter 11

127

Final Code and Conclusion

GPIO.output(21,
GPIO.output(19,
GPIO.output(23,
| backward

GPIO.output(24,
GPIO.output(22,
GPIO.output(26,

def allStop():
GPIO.output(21,
GPIO.output(24,

def spinRight():

1)
1
0)

1)
1
0)

0)
0)

leftforward, rightbackward

GPIO.output(24,
GPIO.output(22,
GPIO.output(26,
GPIO.output(21,
GPIO.output(19,
GPIO.output(23,

def spinLeft():
rightforward,
GPIO.output(21,
GPIO.output(19,
GPIO.output(23,
GPIO.output(24,
GPIO.output(22,
GPIO.output(26,

GPS setup
gpsd = None

1)
0)
1)
1
1)
0)

leftbackward
1)
0)
1)
1)
1)
0)

class GpsPoller(threading.Thread):
def __init__ (self):
threading.Thread.__init__(self)

global gpsd

gpsd = gps(mode=WATCH_ENABLE)
self.current_value=None
self.running = True

def run(self):

global gpsd

while gpsp.running:
gpsd.next()

Compass setup

bus = smbus.SMBus(0)

compAddress = 0Oxle
def read_byte(adr):

return bus.read_byte_data(compAddress, adr)

def read_word(adr):

high = bus.read_byte_data(compAddress, adr)
low = bus.read_byte_data(compAddress, adr+1)

val

(high << 8) + low

128 Make a Raspberry Pi-Controlled Robot

Final Code and Conclusion

return val

def read_word_2c(adr):
val = read_word(adr)
if val >= 0x8000:
return -((65535 - val) + 1)
else:
return val

def write_byte(adr, value):
bus.write_byte_data(compAddress, adr, value)

def getBearing():
write_byte(0, 0b01110000)
write_byte(1l, 0b00100000)
write_byte(2, 0b0OOOEOOO)
scale = 0.92
x_offset = -39
y_offset = -100
x_out = (read_word_2c(3) - x_offset) * scale
y_out = (read_word_2c(7) - y_offset) * scale
bearing = math.atan2(y_out, x_out)
if bearing < 0:
bearing + 2 * math.pi
return str(math.degrees(bearing))

Robotic arm servo setup

def 1iftArm():
for 1 in range(50, 90):
subprocess.call("echo 2=
time.sleep(0.5)

+ str(i) + "/dev/servoblaster", shell=True)

def lowerArm():
for 1 in reversed(range(50, 90)):
subprocess.call("echo 2=" + str(i) + "/dev/servoblaster", shell=True)
time.sleep(0.5)

Rangefinder setup
GPIO.setup(15, GPIO.OUT)
GPIO.setup(13, GPIO.IN)

def getRange():

time.sleep(0.3)

GPIO.output(15, 1)

time.sleep(0.00001)

GPIO.output(15, 0)

while GPIO.input(13) == 0:
signaloff = time.time()

while GPIO.input(13) == 1:
signalon = time.time()

timepassed = signalon - signaloff

distance = timepassed * 17000

Chapter 11

129

Final Code and Conclusion

return str(distance)

Pressure and temperature
bmp = BMP0O85(0x77)
def getTemperature():
return str(bmp.readTemperature())

def getPressure():
return str(bmp.readPressure()/1000)
if __name__ == '__main__
gpsQuery = raw_input("Do you have a GPS connected? (y/n) ")
if gpsQuery == 'y':
gpsp = GpsPoller()
try:
gpsp.start()
while True:

Get command from user

os.system("clear")

print "Range to target: " + getRange()

print "Temp: " + getTemperature() + "C"
print "Pressure: " + getPressure() + "kPa"
print "Location: + str(gpsd.fix.longitude)
+ ", " + str(gpsd.fix.latitude)

print "Bearing: " + getBearing() + " degrees"
print "W = forward"

print "Z = backward"

print "A = left"

print "D = right"

print "S = stop"

print "0 = raise arm"

print "P = lower arm"

print "I = take picture"

command = raw_input("Enter command(Q to quit): ")

if command == "w":
moveForward()
time.sleep(0.5)
continue

elif command == "z":
moveBackward()
time.sleep(0.5)
continue

elif command == "a":
spinLeft()
time.sleep(0.5)
continue

elif command == "d":
spinRight()
time.sleep(0.5)
continue

elif command == "s":
allStop()

130 Make a Raspberry Pi-Controlled Robot

Final Code and Conclusion

time.sleep(0.5)

continue

elif command == "o":
TiftArm()
time.sleep(0.5)
continue

elif command == "p":
TowerArm()
time.sleep(0.5)
continue

elif command == "i":

subprocess.call("raspistill -o image.jpg",
shell=True)
time.sleep(0.5)
continue
elif command == "q":
gpsp.running=False
gpsp. join()
GPIO.cleanup()
break
else:
print "Command not recognized. Try again."
time.sleep(1)
continue
except (KeyboardInterrupt, SystemExit):
gpsp.running = False
gpsp.join()
GPI0.cleanup()
else:
try:
while True:
Get command from user
os.system("clear")
print "Range to target:
print "Temp: "

+ getRange()

+ getTemperature() + "C"
print "Pressure: " + getPressure() + "kPa"
print "Bearing: + getBearing() + " degrees"
print "W = forward"

print "Z = backward"

print "A = left"

print "D = right"

print "S = stop"

print "0 = raise arm"

print "P = lower arm"

print "I = take picture"

command = raw_input("Enter command
(Q to quit): ")
if command == "w":
moveForward()
time.sleep(0.5)
continue
elif command == "z":

moveBackward()

Chapter11 131

Final Code and Conclusion

time.sleep(0.5)

continue

elif command == "a":
spinLeft()
time.sleep(0.5)
continue

elif command == "d":
spinRight()
time.sleep(0.5)
continue

elif command == "s":
allStop()
time.sleep(0.5)
continue

elif command == "o":
1iftArm()
time.sleep(0.5)
continue

elif command == "p":
lowerArm()
time.sleep(0.5)
continue

elif command == "i":
subprocess.call("raspistill -o
image.jpg",

shell=True)
time.sleep(0.5)
continue

elif command == "q":
gpsp.running=False
gpsp.join()
GPIO.cleanup()
break

else:
print "Command not recognized.
Try again."
time.sleep(1)
continue

except (KeyboardInterrupt, SystemExit):
GPI0.cleanup()

Now, keep in mind that this is only a starter script, and it doesn’t use all of the sensors we
went over in Chapter 10. Because your Pi has a limited number of GPIO pins, you may have
to play around with power rails on your breadboard, adding and subtracting 12C devices,
and other ways of managing the sensors on your rover. When it’s running, you'll see a
command window like that in Figure 11-1.

132 Make a Raspberry Pi-Controlled Robot

Final Code and Conclusion

Figure 11-1. Rover command program window

You may even decide to design a GUI for your rover interface. If you decide to do that, | suggest
researching Python'’s Tkinter library. It's functional more than fashionable, but its small learning
curve makes it possible to design fully working user interfaces for your Python scripts.

Whatever you decide to do with your rover, above all have fun with it. Once you've solved the
problemsinherentin designing a rover from scratch, you can modify and tweak it to your heart’s
content.

| look forward to seeing what you come up with!

Chapter 11

133

You've probably noticed that after you get the Pi up and running, working with it is pretty
straightforward. You have root access (using sudo) to any files you need to change, such as /etc/
network/interfaces, or the /etc/rc.local file. You can plug in your keyboard, mouse, and monitor,
and work with it as a standard desktop machine, or (as | prefer) you can just hook it to your
network and remotely log into it via SSH (or VNG, if you need a graphic desktop environment).
With the wireless working, you can put the Pi in your rover and do all of your programming
work without taking it out of the robot.

But what about setting it up in the first place? Even if you bought your Pi with the now-available
NOOBS-preloaded SD card, you still need to install Raspbian and set it up to be easily accessed
remotely. If you just bought yourself a bare-bones setup and need to get NOOBS, you may be
a little confused. Sure, there are instructions on the raspberrypi.org website, but who reads
instructions? And if you're new to this whole Raspberry Pi thing, you may need some help.

That is what this appendix is for. (The word appendix comes from the Latin word appendere,
meaning “to hang upon,” or “to explain OS installation.’) Let’s quickly go through the process
of downloading NOOBS, formatting your SD card, installing Raspbian, and working through
the raspi-configtool.If you bought a preformatted card (always a good idea, as it's only about
$7, and all proceeds go to the nonprofit Raspberry Pi Foundation), you can skip ahead to the
installation section.

And why download NOOBS, you ask? NOOBS is handy because it contains all the files you need
in one easy download. In fact, it contains the installation files for several operating systems,
including Raspbian and Kodi Entertainment Center, so should you want to experiment with
other OSs on your Pi, by downloading NOOBS you have access to a virtual cornucopia of op-
erating system goodness.

135

Download NOOBS

Download NOOBS

NOOBS, which stands for New Out Of Box Software, is available for free from http://www.rasp
berrypi.org/downloads. The version as of this writing is 1.3.5. On that page, click the ZIP file
to begin the download and get a cup of coffee (or go to bed—it’s a hefty 1.3GB download).

Afterthe ZIPfileis downloaded, extract the files. You should end up with a folder containing
files similar to what you see in Figure A-1.

CRLEL & MO, =Y 2%

Bzl L1 LRI LW R w1
[T & i —
e [e2gmE Tamils iy P
- i :u_...g.-.q,
LR]
oy dpaplm iy A P P A
% [LE T] L = L
i T Fad, D e e
- e P
ol s]
@ FeiE | e
ST
W o T e
e]
o e
T argm
P
[
il

Figure A-1. Contents of the NOOBS folder

Set that folder aside for a moment. Before we do anything with it, we need to get the SD
card ready.

Download the SD Card Formatting Tool

Although you can probably just drag and drop the NOOBS files onto a blank SD card and
expect it to work, you may not want to take that chance. Depending on your computer’s
operating system and the format currently on the card (which often depends on the card’s
manufacturer), the dragged-and-dropped files may or may not install correctly onto the
card. | have had luck with a Mac and a PNY card, but the same card did not accept the files
when | attempted to drag and drop them from a Windows installation. To avoid any guess-
work, | highly recommend getting the card-formatting tool from the SD Association’s
website.

136 Make a Raspberry Pi-Controlled Robot

Format and Fill Your Card

Point your browser to http://www.sdcard.org/downloads/formatter_4/. On the left side of the
page, you'll see your download choices (Figure A-2). Select your operating system, agree to the
terms, and download the tool. Unlike the NOOBS file, it’s quite small.

il apmwni BF [lasa—d i bem . WF e=sBae i bmmy

.

rema o Zresomie s WD eed bereaeer i3

50 Formratter 4.0 for SD/SDHC FSDNC

ey gatiniy e @ W] =r—ryy zo-fn. HAH =rwroe= sl AL
PEEMTER PR W AR Ran e s Wk RS N BOTRAN T PR A g ey
o wear B0, B gresd [EINC meery ngeein

Il W0 Boirreaitns mmn oradiedd s ifoe'sy P eeeeren deel s anieg T
ADRHIE D miansr . i1 S LTty FAT TSR I el T) s
rmtind if ber wi e il % TP e e surimiii

m‘" . e T, 6P Al S iy el N Sy Bl Sy LY LS D
T TS R SNl o BT T

Fean & Tvwara
Than "I | Tl BTG ey rarss Rass 8 Tromevoad dews’ o e sl far ire 50

e s ALY wlaedad 't vty it 531 Farealiny S o0 el @ Poprngied
Bdanciadim ArEl’ FRaER U SOESTTE TN R I BT (- W AT raresds maewe AN
e ek B wrnettry fuscesd 6 drmed B Frisesaid bne” = S Gaciany i

g RS ——

Figure A-2. The NOOBS download

When it is downloaded, open up the file and follow the instructions to install the SD card for-
matting tool on your machine.

Format and Fill Your Card

While we're on the subject of cards, which one are you using? You'll need at least 8GB for your
install. (The raspberrypi.org site says 4GB, but my experience is that 4GB isn't big enough.) Go
larger if you like; there’s no upper limit, as far as | know. | tend to go with 16GB.

Put the card in your computer’s card slot. Open the formatting tool you installed earlier and
follow the instructions to format the card.

BS Make sure you choose the correct drive to format. The tool will erase whatever
disk you point it at! That includes your hard drive. Be careful!

When the tool is done and the card is ready, just copy the files from the NOOBS_v1_3_5 folder
onto the card. That’s it!

Appendix A

137

The raspi-config Tool

138

The raspi-config Tool

When the Pi starts up for the first time, you'll see a splash screen, giving you the option of
which OS to install. Choose Raspbian (the first option) and click Install. The NOOBS tool
will expand the file system to fill your SD card and then do a clean install of Raspbian. Feel
free to watch fora while, as the Raspberry Pi Foundation has included some helpful reading
material to watch while you wait. And you will wait: especially if you have a high-capacity
SD card, the installation may take up to an hour.

When the install is done, you'll reboot the Pi, and then will be greeted with the raspti-
config tool (Figure A-3).

Figure A-3. The raspi-config tool

Getting around the tool is easy: use the up and down arrows to choose your line item, and
then the right arrow and Enter key to select.

You used the NOOBS tool, so you can disregard the first item, Expand Filesystem, because
NOOBS automatically expands the installation to fill the SD card. The second menu item
lets you change the default username and password from pi and raspberry, respectively,
to something more appropriate, should you so desire. It's probably unnecessary, unless
you plan on exposing your Pi to the outside world via an unprotected network.

The third option allows you to choose whether you want to boot to a desktop environment,
a command line, or the Scratch programming language IDE. If you choose to boot to a
command line, you can always start a desktop by typing startx at the prompt.

The fourth option, Internationalisation Options, is important if you're not using the Pi in
the United Kingdom. Work your way through the menus, choosing your locale, time zone,
and the sort of keyboard you have. The locale menu is a little different to get around in,
and can be a bit confusing. First of all, it's comprehensive, meaning that a /ot of regions are
listed, from Antigua to Zimbabwe. To choose your locale, move up and down with the
arrow keys. The locale(s) currently selected will have an asteriskin the brackets (Figure A-4).
To clear or add an asterisk, press the space bar while you have that line selected. According

Make a Raspberry Pi-Controlled Robot

The raspi-config Tool

to the configuration instructions on the screen, when faced with a choice, choose the UTF-8
locale for your country.

Amamb Py -H-:L-- m '“..:I"
_HTW T e P e i

i LR g——

Figure A-4. en_US locale selected in raspi-config

When you're finished, press the Tab key to get to the <Ok> option, and press Enter. Follow that
up by choosing your time zone (your system clock will be updated via a network time server if
you have your Pi connected to the Internet while you run the tool) and your keyboard layout.
In general, unless you have a super-duper high-tech keyboard, you can probably just agree with
the defaults presented to you in the keyboard selection screens and press <Ok>. You'll know
you got it right if, after you're finished, pressing Shift+2 gives you the result you expect—either
an at sign (@) or a double quote (*).

Enable Camera, the fifth option, does just what it says—configuring the Pi to work with the
camera board. If you don’t enable it, your Pi won't be able to work with the camera, and if you're
planning on putting the IR camerain the robotic arm as per the rover design, you'll need camera
support. Even if you're not going to use the Pi camera, | recommend enabling it. It doesn’t cost
you anything.

Option six, Add to Rastrack, simply adds your Pi to the global database/map of Raspberry Pis.
Feel free to enable it if you're not feeling particularly paranoid today.

The seventh option, Overclock, gives you the ability to upgrade your 700MHz chip all the way
to a screaming-fast 1GHz. This is totally up to you; | find it’s not really necessary unless you're
planning on doing a lot of intensive computing or working with video. It can make your Pi run
a little hot, and can cause system instability. Experiment if you feel you must.

Option eight, Advanced Options, is important if only because of its fourth submenu item, SSH
(Figure A-5).It’simportant that you enable the SSH server on your Pi, so you can log in remotely
and work on it while it’s installed in your rover or other project. Experiment with the others as
you like.

Appendix A

139

The raspi-config Tool

140

Figure A-5. Enabling the SSH tool

When you're finished playing with the options in the tool, select Finish and reboot your Pi
if necessary.

The final part of the setup process is to update your Pi. Updates are continually being
released, and it’s quite likely that one or more of the packages on your Pihave been updated
since the NOOBS tool was released. Open a terminal, and at the prompt type sudo apt-
get update and sudo apt-get upgrade. That will make sure all of your installed software
is cutting-edge. Depending on the number of updates to the software you have installed,
this update and upgrade process can take quite a while—not quite as long as the initial
installation, but still long enough to go enjoy a nice cup of tea.

That is a short-and-sweet guide to getting your Pi ready to program and build. As you
progress through the build, you may find yourself downloading other software packages
as well; it's not uncommon to end up with an SD card that’s completely tailored to one
project in terms of installed software and written programs and scripts. This is another
advantage to the Pi’s hard drive system: you can set that SD card aside, buy another one
for under $30, and start fresh on the next project. It's not like buying another 1TB hard
drive for your laptop every time you start a new build.

Now thatyou're up and running, you may wantto peekat Appendix Bif you need arefresher
on (or an introduction to) the Python scripting language.

Make a Raspberry Pi-Controlled Robot

As you've probably noticed from flipping through the book, all of my scripts for the robot are
written in Python. There are some good reasons for this. If you are already a skilled Python
aficionado, you can probably skip this portion of the book. On the other hand, if you need a
refresher, or if Python is completely new to you, read on for a quick-and-dirty introduction to
this powerful language.

Python on the Pi: A History in Four Paragraphs

Python was born in 1989 to Guido van Rossum, who had a crazy idea that programming should
be accessible to everybody, not just geeks with broken glasses and pocket protectors. He was
working with alanguage called ABC, and wanted alanguage that would fix some of its problems
and add new features. The result, created over a Christmas holiday, was Python. He continues
to have a hand in the development of the language, and has been gifted by the Python com-
munity with the title Benevolent Dictator for Life, or BDFL.

Contrary to what some believe, Python is not named after the snake. Rather, it is named for the
British comedy troupe Monty Python, of whom van Rossum is a huge fan. (If you have never
seen a Monty Python sketch, you should go to YouTube right now and watch a few. | recommend
the Dead Parrot sketch, the Ministry of Silly Walks, and the Argument Clinic.) No, you don’t need
to be a fan to use the language, but it helps you get some of the in-jokes.

Because of its Monty Python origins, you'll find references to the comedy scattered throughout
Python. Instead of the common foo and bar example functions and variable names, you'll find
spam and eggs. “Knights of Ni” references abound in tutorials and books. Even the integrated
development environment (IDE) called IDLE is named after one of the members (see if you can
guess which one).

141

Using IDLE

142

As to Python on the Pi, the Pi’s creators (Eben Upton, Rob Mullins, Jack Lang, and Alan
Mycroft) wanted a small, cheap computer that anybody could learn to program on. Know-
ing how simple and how powerful Python was, they included it as the default language
on the Pi. Yes, you can program its ARM processor in C or even (if you're particularly mas-
ochistic) assembly language, but after learning about Python, why would you want to?

Using IDLE

Perhaps the best way to get an introduction to the language is by using its real-time de-
velopment environment, IDLE. On your Raspberry Pi desktop, doubleclick the IDLE icon
(Figure B-1).

Figure B-1. The IDLE icon

This opens an interactive screen, as you see in Figure B-2.

Let’s start with the first program any programmer ever learns. In your IDLE prompt, type
the following:

print "Hello, world!"
You should be rewarded with:
'Hello, world!"'

If you've programmed in different languages, you should immediately notice a difference.
To print “Hello, world!” in C++, you'd need to type the following:

include <iostream>

using namespace std;

int main()

{
cout << "Hello, world!" << endl;
return 0;

Make a Raspberry Pi-Controlled Robot

Using IDLE

B W el Selon Oiers rvess Hep

tn e |

Figure B-2. The IDLE environment

Python takes only one line to do the same thing. There’s also a noticeable lack of semicolons,
and opening and closing braces. Python uses indentations and blank space to delineate blocks
of code. If you need to block out an if statement, for example, you end the statement with a
colon (:), and then the conditional statements are all indented. When the conditional state-
ments end, the indentation ends.

Lines don’t end with semicolons; rather, when a line is over, it’s just over. So to illustrate an i1f
block, for example:
if x < y:

print "x is less than y"
print "This block of code is now over"

print "This is a new code section."

This has the effect of making Python code much easier to read, and much easier to debug.

Appendix B

143

Using IDLE

144

/ As you progress in your programming skills, get in the excellent habit of
commenting your code; it makes it easier not only for others to understand
it, but also for you to understand your own code when you go back to it after

several months of doing something completely different.

Now, back in IDLE, type x = 4.

Then type x and press Enter. You'll be rewarded with the following:
4

You've just defined the variable x as an integer: a variable that can hold a small number
(well, a number between 0 and 65533).

Typey = "This is a string". Then typey and press Enter. You'll be rewarded with the
following:

'This is a string'
You've just defined the variable y as a string, a collection of characters.
Now, type x + 4 and press Enter. You'll see:

8
Typey + " and is long" and press Enter, and you'll see this:

'This is a string and is long'

To finish off this little lesson, type x +" is not a string" and press Enter. You'll see your
first error:

TypeError: unsupported operand type(s) for +:'int' and 'str

This illustrates that Python is a dynamically typed language. You don’t need to tell it that x
is an integer; it knows from your previous use of x. It also knows that y is a string, and that
you can't add a string and an integer to each other. However, if you were to convert the
integer to a string, with str(x) + " is not a string", the result of that command would
be:

'4 is not a string'

I've mentioned integers and strings. There are also long variables, ones that can hold large
numbers (519234L, for example); floats, which can hold what we think of as fractional,
decimal, or real numbers (1.2345); and complex, which can hold what mathematicians also
refer to as imaginary numbers, that contain the square root of 1. This is often written as
i (orin engineering as j). So, for example, 3.14 times the square root of —1 will be displayed
as 3.14j in Python. Python’s standard library allows you to perform all of the standard
operations with those numbers: exponentiation, multiplication, division, addition, and

Make a Raspberry Pi-Controlled Robot

Python Scripts

subtraction. If you wish to extend your capabilities, you can import the math module for addi-
tional functions like floor, ceil, and others.

Python’s other main data types are lists, dictionaries, and tuples. Lists, arguably Python’s most
useful data type, are similar to C's arrays. You declare a list with brackets ([]), and once declared,
you can refer to members of a list by their index, starting with 0. For instance, type the following
into IDLE:

spam = ["eggs", "ham", "bacon", "beans"]
Then type the following:
spam[2]
and you should be rewarded with this:
"bacon’

List members can be almost anything, including other lists; this is how you construct two- and
three-dimensional arrays in Python. Lists are mutable, which means you can change them in
place by assigning a new variable to an index (spam[2] = "seven", for example). This differen-
tiates them from strings, which cannot be changed in place, though you can refer to members
of a string by index.

Dictionaries are similar to lists, but they have a key:value relationship. You can declare a dic-
tionary by using curly braces, and then refer to its members by key. To illustrate:

shrubbery = {"spam":"eggs", "knight":"ni", "black":"knight"}
shrubbery["knight"]

returns:

ni

These are the main components of Python, which you'll be working with as you program.

Python Scripts

Writing Python codeinIDLE is all well and good, and is a good way to practice with the language,
but IDLE’s main drawback is that it doesn't easily let you save your code. When you close it, it's
all over.

For that reason, you'll be using a text editor to write all of your programs. There are several
camps among Linux programmers regarding the “proper” text editor to use; the two most
popular are Vim and emacs. If you're familiar with one of those, great. Vim is preinstalled on the
Pi, and you can install emacs with a simple sudo apt-get install emacs in your terminal. If
you're not sure, however, or don’t even know what those are, fear not: the Pi also comes prein-
stalled with nano, a full-featured editor that’s intuitive and easy to use. | use emacs, but in this
book I'll refer to my code in nano for those of you using it.

Appendix B

145

Python Scripts

146

If you are working on your Pi’'s desktop environment (either directly or via a VNC connec-
tion), you can also use the Pi’s built-in Leafpad editor (Figure B-3).

e T

PRy —— L - SR

i ¥ i

g g & e s

e L] E-ﬂq’l'\m—-

B Frogaseras [

B il i Wil i W e
Ak b i [l v cwaa
u o o | B i
T

o

Figure B-3. Getting to the Leafpad editor

Unfortunately, although Leafpad will work fine for writing scripts, it can’t be used from the
command line. Because much of your work is done remotely after the Piis safely ensconced
in the rover, you'll have to get used to another editor.

To write a script, start your chosen text editor. From the command line, you can type nano
test.py.

/ Whenyou useacommand-line editor like nano oremacs, your development
environment will have syntax clues; that is, important Python words like
import and print and def will be color-coded, which can be helpful when

writing unfamiliar code.

Write a short script, such as this one that will print out all even integers between 1 and
100:

for x in range(100):
if x % 2 == 0:
print x
Now, save it as even.py and close the script. Back in your terminal, make sure you're in the
samedirectoryasthe scriptyoujustwroteandtype python even.py.Youshould begreeted
by a long line of even numbers from 0 to 98.

You can make a Python script executable. In other words, clicking the file in your file man-
ager will execute it, rather than opening it in a text editor. To do that, browse to the file's
location in a terminal. From there, to change test.py to an executable, for instance, type
this:

chmod 755 test.py

Make a Raspberry Pi-Controlled Robot

Python Scripts

From then on, if you double-click test.py, you will be greeted with a dialog box like that in
Figure B-4. Depending on the file’s output, you can choose to run it or run it inside a terminal.
This can sometimes be a time-saver if you don’t want to open a terminal to enter python
test.py.

ﬂ Ny =milledl gy &oemechalds Do oes st feon seeke 8

[I_;...; | [P —— ug.-...

Figure B-4. Execute File dialog box

Thatis a breakdown of how to write and execute the Python scripts you'll need to program your
rover. We'll come across other concepts during the build, such as functions, but I'll explain those
as they arise. Hopefully, this will give you enough of an introduction to the language to let you
dive in to the build!

Appendix B

147

Symbols

-rflag, 25
./ (run program command), 23
~/ (home directory), 24

A

accelerometers, 49
ACT light, 9
ad hoc networks, 36
analog-to-digital chip, 50
Arduino IDE, 10
ASIMO robot, 2
assembly
body, 59-64
final steps, 82
motors, 64-66
parts required, 39-51
power, 80-82
robotic arm, 74-79
tools required, 51

wheels, 67-74
audio jack, 10
auto fill, 25
Automatic Identification Sys-
tem (AIS), 94
autonomous behavior, 125

barometric pressure sensors,
48,120
batteries, 12, 45, 56
blacklist file, 110
Blu-ray Discs, 13
BMP180P barometer, 120
body
construction of, 59-64
parts required, 39
breadboards, 50
Broadcom PCM2835, 13

C

cameras
attaching to robotic arm, 77
connecting, 122
live feed from, 123

carputers, 19

case sensitivity, 21

cat command, 22

cd command, 21, 22

cell phone chargers, 12, 80

center of gravity (COQG), 2

charging, 12, 80

chatter, 113

command-line editors, 146

command-line interface (CLI),
22,24,32

compasses, 119

construction (see assembly)

continuous servo motors, 54

cp command, 23

Index 149

D

date command, 23
debouncing, 113
degrees of freedom (DOF), 53
design considerations
internal layout, 82
SD card size, 11
sensors, 125
weight, 5
direct drive, 67
directories
changing, 21, 22
creating, 22
deleting, 22
home, 24
listing files in, 22
navigating, 24
printing working, 22
directory paths, 21
dongle, definition of, 28
Dual H-Bridge L298H motor
controller, 51, 86
duty cycles, 55

E

echo (print) command, 23
Edimax EW-7811UN, 29, 50
Ethernet ports, 8, 122
EW-7811UN, 29, 50

exit command, 23

external video devices, 10

F

falling edge, 115

FDX light, 9

feet vs. wheels, 3

files/filesystem
blacklist file, 110
categories of files, 21
commands, 22
interfaces file, 33

KML files, 101
listing files, 22
names, 21
navigating, 24
structure of, 21
floating input, 113

G

GPIO (general purpose input/
output) pins
floating input, 113
for 12C protocol, 117
for motor controller, 85
Model B+ vs. Model B, 14
servo mapping of, 57
ultrasonic sensor and, 108
vs. Arduino IDE, 10

GPIO (general-purpose input/
output) pins
benefits of, 10

GPS (Global Positioning Sys-
tem) units
communicating with GPS

module, 96

history of, 93
photograph of, 93
preliminary setup, 94
selecting, 47,93
using GPS data, 99

gpsd library, 94

graphics, HDMI port and, 13

grep command, 23

H

Hall effect magnetic sensor,
50, 111

hard drives, 11

HC-SR04 ultrasonic sensor, 108

HDMI ports, 10, 13,122

headless configuration, 35

headphone plugs, 10

help() function, 16

HMC5883L compass, 119
home directory, 24
Honda ASIMO robot, 2

12C (Inter-Integrated Circuit)
benefits of, 116
protocol for, 117

I2C EEPROM (Electrically Erasa-
ble Programmable Read-
Only Memory), 14

IDLE integrated development
environment, 142

infrared motion sensors, 50,
115

interfaces file, 33

interrupts, 114

IP addresses
setting, 33
terminology, 35

J

jumper wires, 50

K

KML files, 101

L

L298H motor controller, 51, 86
LAN (Ethernet) ports, 8
LAN9512 chip, 8
Leafpad editor, 146
LED (light-emitting diodes),
116
Linux
command-line interface
(CLI), 22
files/filesytem structure, 21
history of, 20

150 Index

navigation in, 24
Pi terminal prompt, 21
wireless operation and, 28
LNK light, 9
Is command, 22
LXTerminal icon, 21

magnetic field sensors, 48, 50,
111
man command, 15, 23
maps, 99
master devices, 116
math library, 119
MCP3008 analog-to-digital
chip, 50, 109
mkdir command, 22
Model B+
configuration of, 15
GPIO pins, 14
photograph of, 14
power requirements, 15
USB ports, 15
Models A and B
audio jack, 10
diagram of, 8
ehternet port, 8
GPIO pins, 10
HDMI port, 13
LAN (Ethernet) ports, 8
power port, 12
RCA jack, 10
SD card, 11
status lights, 9
USB ports, 8
vs. Model B+, 14
motion sensors, 50, 115
motor controller
GPIO pins for, 85
photograph of, 86
RPi.GPIO library for, 87
troubleshooting, 87
motors
connecting, 85-88

mounting, 64-66
selecting, 41
(see also servomotors)
movement, 126
mv command, 23

N

National Marine Electronics
Association (NMEA), 94
navigation
of filesystem, 24
with GPS module, 103, 126
network configuration
ad hoc, 36
addresses and terminology,
35
CLl approach, 32
GUl approach, 30
headless, 35
SSID and passwords, 34
static IP address, 33
network id/key, 33
Nintendo Wii devices, 121
nodes, 116
NOOBS (New Out of Box Soft-
ware)
benefits of, 135
downloading, 136
downloading SD card for-
matting tool, 136
formatting/filling SD card,
137
raspi-config tool, 138

o)

OK light, 9

P

Parallax RB-PIx-75 motion sen-
sor, 115

parts
body, 39-40
miscellaneous, 50
power train, 41-47
sensors, 47-50
passwords, 34
PCM2835 chip, 13
photoresistors, 49, 109
Pi terminal prompt, 21
power
consumption in Model B+,
15
power ports, 12
requirements for streaming
video, 123
power train
assembly of, 80
parts required, 41
print command, 23
programming
autonomous behavior, 125
displaying sensor data, 125
final steps of, 125
GPS sensor, 126
movement, 126
overview of, 6
sensor planning, 125
pull-ups/pull-downs, 113
PuTTy, 36
pwd command, 22
PWM (pulse-width modula-
tion), 54
PWR light, 9
py-spidev library, 110
Python
as dynamically typed lan-
guage, 144
data types in, 144
history of, 141
IDLE integrated develop-
ment environment, 142
scriptsin, 145
syntaxin, 143, 146

Index 151

R

Ralink chipset, 29

RAM, 11

rangefinders, 49

Raspberry Pi
help resources, 15, 23
loggingin, 24
Model B+, 14-15
Models Aand B, 8-13
setup of, 135-140
updating/upgrading, 32
voltage limitations, 12, 15
vs. Arduino, 10
vs. other small computers,

19

website forum, 17
wireless setup, 27

Raspberry Pi Stack Exchange,
17

Raspbian operating system
Linux roots of, 19
RPLGPIO library, 10

raspi-config tool, 138

RB-PIx-75 motion sensor, 115

RCA jacks, 10

reed switches, 113

regular expressions, 23

remote log in, 35

RGB video, 10

rising edge, 115

rm command, 22

rmdir command, 22

robotic arm
assembly, 74-79
controlling, 89-91
photograph of, 89
testing, 89

robots
ASIMO robot, 2
challenges of building, 1
wheeled, 3

root users, 21

rover
assembly of, 59-83

diagram of, 2
driving, 126
GPS system for, 93-103
motors/motor controller
connection, 85-88
overview of, 2
photograph of, 5
photograph of interior, 83
programming overview, 6
robotic arm controller, 89—
91
sensors for, 105-123
servo motor installation, 53
RPi.GPIO library
GPIO control with, 10
motor controller connec-
tion and, 87
PWM control with, 54
rpiSht1x library, 107
run program command (./), 23

S

scripts, 145
SD cards, 9,11, 136
search program, 23
sensors
BMP180P barometer, 120
cameras, 122
design considerations, 125
displaying data from, 125
HC-SR04 ultrasonic sensor,
108
HMC5883L compass, 119
libraries for, 105
magnetic field sensors, 111
motion sensors, 115
Nintendo Wii devices, 121
obtaining/using code for,
106
photoresistors, 109
reed switches, 113
selecting, 47-50, 105
SHT15 temperature sensor,
107

soldering, 106
ServoBlaster library, 57
servomotors
PWM (pulse-width modula-
tion) control, 54
servo mappings, 57
ServoBlaster library, 57
types of, 54
SHT15 temperature sensor, 47,
107
slaves devices, 116
small-form-factor computers,
19
smbus library, 119
snap-action switches, 113
soldering, 106
SPI bus protocol, 110
SSH (Secure Shell) protocol, 36
Stack Overflow website, 17
standard servo motors, 54
standard tools, 51
status lights, 9
streaming camera feeds, 123
sudo (superuser do), 21-23
superusers, 21
system on a chip (SoC), 13

-

Tab key, 25
temperature sensors, 48, 107
threads, 98
tools, 51
troubleshooting
GPS units, 98
motor controller connec-
tion, 87
robotic arm, 89
status lights, 9
streaming video, 123

152 Index

U

UART (universal asynchronous
receiver/transmitter), 95

ultrasonic rangefinders, 49,
108

updating/upgrading, 32

USB hubs, 8, 15, 29

USB ports, 8, 15

V'

video devices, connecting, 10
(see also cameras)

Virtual Network Computing
(VNQ), 36
voltage limitations, 12, 15

W

webcams, 49

weight, design considerations
and, 5

WEP authentication, 33

wheels
direct drive approach, 67
front wheels assembly, 72
rear wheels assembly, 68

selecting, 41
size of, 4
vs. feet, 3
WiFi configuration, 30
Wiichuck adapter, 121
wireless adapter
as hoc networks, 36
challenges of, 28
Edimax EW-7811UN, 50
headless configuration, 35
operation through CLI, 32
operation through GUI, 30
Ralink chipset and, 29
static IP address, setting, 33
wpasupplicant message, 33

Index 153

About the Author

Wolfram Donat is a graduate of the University of Alaska Anchorage, with a B.S. degree in
computer engineering. Along with an interest in robotics, computer vision, and embedded
systems, his general technological interests and Internet expertise serve to make him an ex-
tremely eclectic programmer. He specializes in Cand C++, with additional skills in Java, Python,
and C#/.NET. He is the author of several books and has received funding from NASA for his
work on autonomous submersibles.

Colophon

The cover and body font is Myriad Pro, the heading font is Benton Sans, the sidebar heading
fontis Camo Sans, and the code font is Ubunto Mono.

